统计物理学习讲义 中科院数学院复杂系统研究中心 复杂系统学习班 (CSSGBJ) 韩 靖 2003 年 10 月 27 日.

Slides:



Advertisements
Similar presentations
Chapter 2 Combinatorial Analysis 主講人 : 虞台文. Content Basic Procedure for Probability Calculation Counting – Ordered Samples with Replacement – Ordered.
Advertisements

新目标初中英语 七年级下册. Unit 8 I’d like some noodles. Section B Period Two.
國立交通大學應用數學系 數學建模與科學計算研究所 簡 介. 隨著科技的日新月異,人類為追求完美的生活,其 所面臨的科學與工程問題也日趨複雜,舉凡天氣的 預測、飛機的設計、生物醫學中的神經網路、奈米 材料的研發、衍生性金融產品的定價、甚至交通流 量的監測等問題,透過「數學建模」的量化過程, 再配合以「科學計算」的方式去模擬現象並嘗試尋.
Course 1 演算法: 效率、分析與量級 Algorithms: Efficiency, Analysis, and Order
2014 年上学期 湖南长郡卫星远程学校 制作 13 Getting news from the Internet.
第九章 证券投资组合管理 东北财经大学金融学院.
台北市漢口街一段85號8樓 TEL: (02) ILTEA國際英語認證 ILTEA English Proficiency Tests 符合教育部CEF採認國際標準 符合人事行政局陞任計分標準 台北市漢口街一段85號8樓 TEL: (02)
Unit 9 Have you ever been to an amusement park? Section A.
大型仪器介绍课程 小角X射线散射原理与应用 庄 文 昌 指导老师: 陈 晓.
第十九课 旅行.
统计物理学与复杂系统 陈晓松 中国科学院理论物理研究所 兰州大学,2013年8月.
Performance Evaluation
資料庫設計 Database Design.
第三章 隨機變數.
Chapter 8 Liner Regression and Correlation 第八章 直线回归和相关
SHARE with YOU Why am I here? (堅持……) What did I do?
運輸與空間的交互作用 運輸發展的階段 一、分散的港口 二、侵入路線 三、發展支線 四、初步相互連結 五、完全相互連結 六、高度優越的幹線
版權所有 翻印必究 指導教授:林克默 博士 報告學生:許博淳 報告日期: 2011/10/24. 版權所有 翻印必究 Results and discussion The crystalline peak at 33° corresponds to the diffraction of the (200)
For Senior 1/2 高二学年第32期总第551期 Life after a crash (Page 6)
Thinking of Instrumentation Survivability Under Severe Accident
Population proportion and sample proportion
模式识别 Pattern Recognition
能發光最美 電激發光高分子材料(PLED) 國立成功大學 化工系 陳 雲 液晶高分子材料、高分子奈米材料、聚氨酯材料
微積分網路教學課程 應用統計學系 周 章.
Ch2 Infinite-horizon and Overlapping- generations Models (无限期与跨期模型)
Properties of Continuous probability distributions
§5.6 Hole-Burning and The Lamb Dip in Doppler- Broadened Gas Laser
Sampling Theory and Some Important Sampling Distributions
Decision Support System (靜宜資管楊子青)
Simulated Annealing 報告者:李怡緯 OPLAB in NTUIM.
自引力体系统计物理的新进展 Ping He
Greening the city.
Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi
971研究方法課程第九次上課 認識、理解及選擇一項適當的研究策略
Interval Estimation區間估計
子博弈完美Nash均衡 我们知道,一个博弈可以有多于一个的Nash均衡。在某些情况下,我们可以按照“子博弈完美”的要求,把不符合这个要求的均衡去掉。 扩展型博弈G的一部分g叫做一个子博弈,如果g包含某个节点和它所有的后继点,并且一个G的信息集或者和g不相交,或者整个含于g。 一个Nash均衡称为子博弈完美的,如果它在每.
2019/1/1 哈萨克铬业公司介绍 2008年10月10日.
The Nature and Scope of Econometrics
Decision Support System (靜宜資管楊子青)
模式识别 Pattern Recognition
统 计 学 (第三版) 2008 作者 贾俊平 统计学.
Monte Carlo模拟 引言(introduction) 均匀随机数的产生(Random number generation)
实验数据处理方法 第二部分:Monte Carlo模拟
Idioms about money.
高性能计算与天文技术联合实验室 智能与计算学部 天津大学
Mechanics Exercise Class Ⅰ
THE STATISTICAL INTERPRETATION OF ENTROPY 熵的統計學解釋
交流阻抗的量測與分析 交流阻抗 (AC Impedance) 電阻的阻抗 Z=R 電容的阻抗 電感的阻抗 Z〞 ω變大 R Z′
義守大學財金系教授 許碧峰 電話: 存活分析與臨床應用 義守大學財金系教授 許碧峰 電話:
III. 分子模拟方法 1. 简介 1.1. 分子模拟的目的 1.2. 平衡统计物理基本概念 简化计算量 (相对第一性计算而言)
論文的第壹章-----問題的陳現 一、第一章的結構與次序 二、研究問題的來源 三、研究問題的選擇 四、選擇研究問題的步驟 五、研究假設的性質
相關統計觀念復習 Review II.
第八章 假設之檢定與信賴區間 陳順宇 教授 成功大學統計系.
Simulated Annealing Algorithm,SAA
Common Qs Regarding Earnings
中央社新聞— <LTTC:台灣學生英語聽說提升 讀寫相對下降>
如果夸克的世界只是又一層更細微的翻版,那就沒有太大的意思。
中考英语阅读理解 完成句子命题与备考 宝鸡市教育局教研室 任军利
美國亞利桑納州Eurofresh農場的晨曦
Statistics Chapter 1 Introduction Instructor: Yanzhi Wang.
Nucleon EM form factors in a quark-gluon core model
实验数据处理方法 第二部分:Monte Carlo模拟
投影组态相互作用方法 (Projected Configuration Interaction(PCI) method
Monte Carlo模拟 引言(introduction) 均匀随机数的产生(Random number generation)
Example for CIC Report CIS-I.
Lecture #10 State space approach.
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
Principle and application of optical information technology
CEPC SRF System Jiyuan Zhai
Gaussian Process Ruohua Shi Meeting
Presentation transcript:

统计物理学习讲义 中科院数学院复杂系统研究中心 复杂系统学习班 (CSSGBJ) 韩 靖 2003 年 10 月 27 日

统计物理、自旋玻璃和复杂系统 统计物理做什么? 自旋玻璃 (Spin Glasses) 是什么? 它们在复杂系统研究中有何应用? 它们的局限性? 探讨:对我们的研究有何启发?

学习提纲和计划 ( 欢迎补充修改 ) 基本概念介绍 Entropy, Boltzmann 分布 (partition function) Example: K-SAT 问题的相变 Dynamics and Landscapes 各态历尽, landscapes, Monte Carlo Simulation Example: Simulated Annealing( 模拟退火 ) Meanfield, Replica Symmetry, Cavity Methods Meanfield 用于网络动力学的例子 Replica Symmetry 用于组合问题的例子 Cavity Methods: Survey Propagation Critical Phenomena & Power-law 相变 SOC, HOT/COLD 理论 谁报名来主讲?

统计物理 Statistical physics is about systems composed of many parts. 集体行为 组合数学和概率理论 Traditional examples: 气体、液体、固体 - 原子或分子; 金属、半导体 - 电子 ; 量子场 - 量子,电磁场 - 光子等 Complex systems examples: 生态系统 - 物种 社会系统 - 人 计算机网络 - 计算机 市场 - 经纪人 agent 鱼群 - 鱼、鸟群 - 鸟、蚁群 - 蚂蚁 组合问题 – 变量 – 研究复杂系统为什么要学习统计物理?

Collective Behavior 群体行为 集体行为: 系统由大量相似的个体组成 全局行为不依赖于个体的精确细节, 而相互作用必须合理定义,并且不要太复杂; 个体在单独存在的行为与在整体中的行为很不一样. ( 在整体中各个体行为变得相似 ) ; 相互作用的类型:吸引、抗拒、对齐 … 主要的集体现象:相变、模式形成、群组运动、同步 … 研究手段:统计物理、多主体计算机模拟 “ 磁化 ” 现象 :go 个体行为  邻居动作的平均方向go 同步掌声 恐慌现象

自旋玻璃 (Spin Glasses) 简单的理想模型,性质丰富,易于研究 个体 :spin s i ; 系统 : 多个 spin 局部相互作用 以最简单的 Ising 模型为例: s i =1 或者 –1 在 lattice 上排列,相邻 spin 之间有相互作用 能量 (Hamiltonian) : E = -  J (i-1)i s i-1 s i J ij >0, 偏好相邻同向; J ij <0, 偏好相邻不同向; J ij =0, 无相互作用 考虑外部场 E = -  J ij s i s j -  h i s i 性质:有序 / 无序、受挫、相变、对称破缺 … 现实中的例子:组合问题、恐慌人群、经济模型 (-) (+) ? sisi s i+1 s i-1 J (i-1)i J i(i+1) E=-  J ij s i s j

Spin Glass Configuration r = {s 1,s 2, …,s n } Hamiltonian (E, Cost function): E(r) J =H J (r) = -∑J ik s i s k Quenched variable: J, random variable a probability distribution P(J) Different Spin model: different P(J) Notation: =∑P J (s)g(s) So-called ‘ Disorder ’ : Structural parameter J is random and have large complexity

自旋玻璃例子 - K-SAT 问题 经典 NP- 完全问题 N 个布尔变量 : x i =True/False, s i =1/-1 M 个 clauses: M 个含 k 个变量的逻辑表达式 K=3, 3-SAT: c 1 :x 1 or (not x 3 ) or x 8, c 2 :(not x 2 ) or x 3 or (not x 4 ), c 3 :x 3 or x 7 or x 9, … 目标:满足所有 M 个 clauses 的 N 个布尔变量的一组赋值 Spin glass 的能量 E = -  a=1,M  (C a =T), Ground State E=-M  解状态 结果:当 K=3, M/N ~4.25, 问题求解困难

恐慌现象 行人建模: 期望移动速度、与他人的排斥力、与墙壁的作用力、个 人速度的扰动 恐慌(由于火灾或者大众心理): 人们希望移动更快 人与人之间的物理冲突更厉害; 出口处障碍、堵塞形成; 危险压力出现; 人群开始出现大众恐慌心理; 看不到其它的出口; 计算机模拟实验: (Go)(Go) 单出口房间:无恐慌、恐慌、惊跑、带圆柱、火灾 走廊:直走廊、中间加宽的走廊 人群:个人主义、群体心理、两者综合

Begin … 统计物理能做什么?怎么做? 基本点: 只关心状态的概率,并不关心演化的过程 (假设各态历经) 熵最大 核心: Boltzmann 分布 (partition function)

学习提纲和计划 基本概念介绍 Entropy, Boltzmann 分布 (partition function) Example: K-SAT 问题的相变 Dynamics and Landscapes 各态历尽, landscapes, Monte Carlo Simulation Example: Simulated Annealing( 模拟退火 ) Meanfield, Replica Symmetry, Cavity Methods Meanfield 用于网络动力学的例子 Replica Symmetry 用于组合问题的例子 Cavity Methods: Survey Propagation Critical Phenomena & Power-law 相变 SOC, HOT/COLD 理论

Entropy Microstate r: a specific configuration of system Macrostate R: an evaluation value Ω(R): number of microstates related to a macrostate Micro-canonical entropy: S(R)=k log Ω(R) More General forms: A macrostate R: {p i } for system be found in a microstate i A distribution of microstates. Gibbs Entropy: S(R) =-k ∑p i logp i Maximum  the most possible distribution of microstates Without constraint on p i, p i =1/N  S is maximized Ω({n i })=M!/n 1 !n 2 !...n N !, p i =n i /M

With Constraint on p i : Partition Function Z Observable quantity E (Hamiltonian) Ergodic Hypothesis (time average=ensemble average) We know: From experiments:, E i for all r i, and = = ∑p i E i, ∑p i =1. We want to know the most probable distribution of microstates Maximize S=-k∑p i logp i and we get: p i =e -βE i /Z, Z=∑ i e -βE i (β=(kT) -1 ) So, {p i } and β is decided by {E i } and Knowing βor T and {E i }, we can define the most possible distribution of microstates {p i } and Z β   T     Z  distribution is less symmetrical

Toy Example Three microstates: E 1 =0, E 2 =2, E 3 =3 We have p 1 E 1 +p 2 E 2 +p 3 E 3 = e.g. 2p 2 +3p 3 =, and p 1 +p 2 +p 3 =1 3 temperatures: decreasing order of T β Zp1p1 p2p2 p3p

Important concepts Partition function: Z(T,E)=∑ r e - E(r)/T Knowing this, we can do a lot of things! Variance of E, #sol, … Free Energy: F = -k T lnZ (?) Entropy S=- (  F/  T) E =-k ∑p i lnp i

Z and #sol (ground state) Z (T)=∑ r e -E(r)/T = ∑ H={1,2, … } ∑ r|E(r)=H e -H/T When T → 0, system are most likely in the ground state. e -E(r)/T → 0 except E(r)=0 Z(0)= ∑ r|E(r)=0 e -0 =∑ r|E(r)=0 So, number of ground states = Z(0). In T>0, Z also counts other r that E(r)>0. But the lower T, the r with lower E(r) Z counts. Z is decreasing when T is decreasing. The K-SAT result considers T=0.

学习提纲和计划 基本概念介绍 Entropy, Boltzmann 分布 (partition function) Example: K-SAT 问题的相变 Dynamics and Landscapes 各态历尽, landscapes, Monte Carlo Simulation Example: Simulated Annealing( 模拟退火 ) Meanfield, Replica Symmetry, Cavity Methods Meanfield 用于网络动力学的例子 Replica Symmetry 用于组合问题的例子 Cavity Methods: Survey Propagation Critical Phenomena & Power-law 相变 SOC, HOT/COLD 理论

各态历尽 对任意 2 个系统状态 r 1 和 r 2, r 1 可以经过有限部 变换到 r

熵最大分布的三个条件 R ij =probability of r i changes to r j 方程的平衡状态是熵最大分布, 必须要满足: p=R·p, R 有唯一的主特征向量 ( 特征值为 1) 各态历经 细致平衡:平衡态时, p i ·R ij =p j ·R ji

Ergodicity breaking and Landscape Mapping of microstates onto energies barrier r1r1 r2r2 r3r3 rnrn … Very high, unlikely to cross, when system size is large, T is low: p i /p j =e -(Ei-Ej)/T

Monte Carlo Simulation 设定状态转换矩阵,使得系统演化服从我们希望的状 态分布 P 。 如果各态历尽和细致平衡,有 把 P 代入就可以得到 R ij

Simulated Annealing 目标 P 是 Boltzmann 分布: p i  e -Ei/T 。 R ij /R ji =e -(Ej-Ei)/T R ij = 1if E j  E i e -(Ej-Ei)/T if E j >E i Simulated Annealing: We want to minimize E T=0, ergodicity breaking, favors minimal E T>0, barriers can be crossed, favors more states Most problems have many metastable states (local optima), various scales of barriers heights

学习提纲和计划 基本概念介绍 Entropy, Boltzmann 分布 (partition function) Example: K-SAT 问题的相变 Dynamics and Landscapes 各态历尽, landscapes, Monte Carlo Simulation Example: Simulated Annealing( 模拟退火 ) Meanfield, Replica Symmetry, Cavity Methods Meanfield 用于网络动力学的例子 Replica Symmetry 用于组合问题的例子 Cavity Methods: Survey Propagation Critical Phenomena & Power-law 相变 SOC, HOT/COLD 理论

Replica Approach and P(J) For a given J, free energy density: f J =-1/(βN) ln Z J For a P(J), we want to know: =∑P(J)f J For n replicas: Z n =∑ J P(J)(Z J ) n ≡ (Z J ) n =∑ {s 1 } ∑ {s 2 } … ∑ {s n } exp{-∑ a=1 n βH J (s a )} s i is the i th replica. f n =-1/(βnN) ln Z n, ln Z= Lim n → 0 (Z n -1/n) We get: = Lim n → 0 f n ≡ f 0

参考教材 Mark Newman 2001 复杂系统暑期学校教材 K-SAT 相变 : Nature, Vol 400, July 1999, p Survey Propagation: Science, Vol 297, Aug. 2002, p , p SOC: 《大自然如何工作》, Per Bak. HOT/COLD: HOT: Highly Optimized Tolerance: A Mechanism for Power Laws in Designed Systems. J. M. Carlson, John Doyle. (April 27, 1999) COLD: Optimal design, robustness, and risk aversion. M. E. J. Newman, Michelle Girvan and J. Doyne Farmer