端粒、端粒酶与人类 生科院21班151021程凯.

Slides:



Advertisements
Similar presentations
行政院原住民族委員會 法規暨訴願審議委員會 102 年度原住民身分法實例演練講習: 原住民身分認定及救濟程序.
Advertisements

大學中文閱讀與書寫課程 推動事項說明與研議 通識教育中心 賴素玫 以小班制 TA 適性輔導為精神之中文閱讀書寫課 程 共同課綱(經外審) /共同教材/共同 學習成果量 延伸教材: 高大中文 一百 書單 推動班級讀書會 制度班級讀書會 制度 強化中文基礎能力檢測機制 高東屏跨校中文能力檢測.
本校自民國 78 年於顏前校長世錫任內創設本系 設立鑑識科學學系大學部,專責鑑識人才之培養, 為目前國內唯一專門培育鑑識科學人才、研究鑑識 科學學術之大學學系,設系剛滿 20 年。自 85 年於姚 前校長高橋任內,設立鑑識科學研究所招收碩士生 ,民國 88 年於謝前校長瑞智任內先後獲內政部、教.
端粒与端粒酶保护染色体的解读 李苗 “ 端粒和端粒酶是如何保护染色体的 ” 2009 年诺贝尔生理学或医学奖获得者.
第二节 基因在亲子代间的传递. 1. 什么叫做遗传? 2. 什么叫做性状? 3. 性状是由什么决定的?
第四节 RNA 的空间结构与功能. RNA 的种类和功能 核糖体 RNA ( rRNA ):核蛋白体组成成分 转移 RNA ( tRNA ):转运氨基酸 信使 RNA ( mRNA ):蛋白质合成模板 不均一核 RNA ( hnRNA ):成熟 mRNA 的前体 小核 RNA ( snRNA ):
植物生理 植物细胞生理基础 同工酶. 学习目标 Click to add title in here Click to add title n here  掌握同工酶的概念。  了解同工酶的意义。
第二章:生物科學與食品 第三節:基因改造食品.
作家研究-簡媜 指導教授:鄭定國 執行TA:簡珮如.
上皮细胞生物学研究中心 成立以来开展的主要合作研究项目 日期 中国科学院 2002 合作单位 项目
第3节 细胞的衰老和凋亡.
吃飯的20個金標準.
第三章 现代教育与人的发展.
龙星课程—肿瘤生物信息学上机课程 曹莎
103年度北區教學資源中心計畫 5月份管考會議
第21课时 生物圈中的微生物 考 点 聚 焦 专 项 突 破 1.
國民中學 自然與生活科技 第二冊 第3章 生殖 3-1 細胞分裂 3-2 無性生殖 3-3 有性生殖.
面对高考之—— 战略与战术 主讲:张海顺 我们的口号: 战略上藐视高考 战术上重视高考.
学校核心发展力 上海市建平中学 程红兵.
必修二 生物 (人教版).
想一想 议一议 P74 我们常吃的蘑菇有根、茎、叶吗? 它们的生长是否需要光? 为什么说它们是真菌而不是植物呢?
三次科技革命 学习目标: 1.知道三次科技革命的时间、标志、发源地、理论基础、主要成就、主要特点及影响。 2.培养归纳历史知识的能力
减数分裂与生殖细胞的形成 复习课.
名师伴你行 SANPINBOOK.
王永慶遺產分配 第三組民法報告 4970T011 劉昭妤 4970T037 吳品怡 4970T090 袁如意
台南在地美食文化介紹 台南市鳳凰城文史協會 理事長 歐財榮.
一、作者概說:    王壽來,民國三十八年生,山西省 五臺縣人,中興大學 法律系畢業,美國 喬治城大學碩士、臺灣師範大學 美術研究所碩博士。長期從事文化與外交工作,現任文建會 文化資產總管理處籌備處主任。   王壽來靈感多取自生活經驗,善用中外名言,描繪人生百態。著有《公務員快意人生》、《藝術‧收藏‧我》、《公務員DNA》、《和世界偉人面對面》等書。
§6.3 性别决定和伴性遗传. §6.3 性别决定和伴性遗传 人类染色体显微形态图 ♀ ♂ 它们是有丝分裂什么时期的照片? 在这两张图中能看得出它们的区别吗?
人类长寿的梦想 端粒与端粒酶 10应化 刘夷之.
细胞核是遗传信息库.
问 题 探 讨 1.DNA的中文全名是什么? 2.为什么DNA能够进行亲子鉴定? 3.你还能说出DNA鉴定技术在其他方面的应用吗?
导入新课 波能绕过障碍物产生衍射。既然光也是一种波,为什么在日常生活中难以观察到光的衍射现象呢?.
高中生物学必修Ⅰ 分子与细胞 前 言.
细胞衰老和死亡 一. 细胞衰老的概念 1. 衰老(aging):生物体的形态、结构和生理功能逐渐衰退的总现象。
第一节 细胞通过分裂产生新细胞.
老化的細胞生物學 (1)細胞衰老(senescence) (2)基因體的不穩定(genomic instability)
关注生物技术的 伦理问题.
2015年高考历史质量分析报告 兰州市外国语高级中学 杨彩玲.
104-1學期教學助理說明會 教務處 教學業務暨發展中心 教務長:黃啟煌 主 任:蔡錦雀 承辦人:曹君琪
肝功能正常的小三阳注意事项.
突變 突變是指遺傳物質發生改變, 而影響到性狀的表現 例:白化症.
减数分裂 制作:乌海市第十中学 史姝婉.
第2节 细胞分化、衰老和凋亡 细胞的一生.
司法机关.
“Licensing mechanisms” S期 DNA合成
骨质疏松症的遗传学研究(part 2) Hong-Wen Deng, Ph.D. Osteoporosis Research Center
生物五界的分類方式.
第十章 方差分析.
telomere and telomerase
第三节 染色体 一、中期染色体的形态结构 同一物种的染色体数目是相对稳定的,性细胞染色体为单倍体(haploid),体细胞为2倍体(diploid),还有一些物种的染色体成倍增加成为4n、6n、8n等,称为多倍体。同一个体的体细胞并非都是2倍体,如大鼠肝细胞有4n、8n、16n等多倍体细胞,果蝇卵巢滋养细胞表现为2n、4n、8n、16n、32n、64n、128n等不同倍性。
人是由什么发育而来的? 一个受精卵.
胚胎干细胞生物学特性和研究进展.
超越自然还是带来毁灭 “人造生命”令全世界不安
用计算器开方.
遗传物质--核酸 核酸分子组成 核酸分子结构.
有关“ATP结构” 的会考复习.
潜行追踪 之红包快跑. 潜行追踪 之红包快跑 红黑对决 随着互联网的发展,网速的飞速提高,有一个特殊的群体,也随之发展壮大,就是一群抢红包黑客,ta们手段高明,耳目灵通,不管红包们深藏何处,没有一个红包能够逃过ta们的手心,都被ta们迅速收归囊中;这一次两群黑客相互不服,准备来一场赌局,以决定谁才是真正的黑老大;而红包们也决定利用这次机会,派出实景红包来打击一下黑客们的嚣张气焰,激烈的决斗马上开始了。。。。。。
H基因库(重链基因连锁群): --- 第14号染色体 κ基因库(κ链基因连锁群): --- 第2号染色体 λ基因库(λ链基因连锁群):
靜宜大學100學年度二學期 服務學習基礎講座 課程助理經驗分享
2010之後 臺灣通識教育的機會與挑戰 臺北醫學大學人文暨社會科學院 林從一.
第 二 章 遗传的细胞学基础.
非同源染色体:不是同源染色体的两条染色体
_01自己实现简单的消息处理框架模型 本节课讲师——void* 视频提供:昆山爱达人信息技术有限公司
基因信息的传递.
BAFF在活动性SLE患者T细胞中的表达:
第三节 转录后修饰.
细胞分裂 有丝分裂.
编程达人-- 从零开始学UI系列教程 第九节、布尔运算 先行者 YC.
五.有丝分裂分离和重组 (一) 有丝分裂重组(mitotic recombination) 1936 Curt Stern 发现
证据运用 第八章 证据的运用 第一节 证据体系的结构及运用规则.
Presentation transcript:

端粒、端粒酶与人类 生科院21班151021程凯

目 录 端粒简介 端粒的功能及组成 形象的比喻端粒对染色体的保护作用(视频) 端粒酶介绍 研发成果 问题与未知

端粒简介 端粒(Telomere) :是真核生物染色体末端的一种特殊结构,实质 上是一重复序列,其长度反映着细胞复制史及复制潜能, 被称作细 胞寿命的 “ 有丝分裂钟” 。端粒是染色体末端的DNA重复序列,也 就是染色体末端的一种特殊结构,在正常人体细胞中,可随着细胞 分裂而逐渐缩短。把端粒当作一件绒线衫袖口脱落的线段,绒线衫 像是结构严密的DNA。排在线上的DNA决定人体性状,它们决定人头 发的直与曲,眼睛的蓝与黑,人的高与矮等等,甚至性格的暴躁和 温和。 与染色体关系:保持染色体的完整性。细胞分裂一次,DNA就复制一次,端粒也就随之缩短一点一旦端粒消耗殆尽,染色体则易于突变而导致动脉硬化和某些癌症。因此,端粒和细胞老化有很大关系。如左图,端粒像个帽子一样保护着染色体。

功能 第一,保护染色体不被核酸酶降解; 第二,防止染色体相互融合; 第三,为端粒酶提供底物,解决DNA复制 末端隐缩,保证染色体的完全复制。 组成 端粒通常是由富含鸟嘌呤核苷酸(G)的短的串联重复序列组成,端粒DNA是由简单的DNA高度重复序列组成的,染色体末端沿着5‘到3’ 方向的链富含GT。在酵母和人中,端粒序列分别为C1-3A/TG1-3和 TTAGGG/CCCTAA,并有许多蛋白与端粒DNA结合。一个基因组内的所有端粒,即一个细胞里不同染色体的端粒都由相同的重复序列组成,但不同物种的染色体端粒的重复序列是各异的。                                               人体端粒DNA的四联体结构

用鞋带比喻端粒对染色体的作用

端粒酶 端粒酶(Telomerase): 基本的核蛋白逆转录酶,可将端粒DNA加至真核细胞染色体末端。端粒在不同物种细胞中对于保持染色体稳定性和细胞活性有重要作用,端粒酶能延长缩短的端粒(缩短的端粒其细胞复制能力受限),从而增强体外细胞的增殖能力。端粒酶在正常人体组织中的活性被抑制,在肿瘤中被重新激活,端粒酶可能参与恶性转化。端粒酶在保持端粒稳定、基因组完整、细胞长期的活性和潜在的继续增殖能力等方面有重要作用。 细胞中有种酵素负责端粒的延长,其名为端粒酶。端粒酶的存在,算是把 DNA 克隆机制的缺陷填补起来,藉由把端粒修复延长,可以让端粒不会因细胞分裂而有所损耗,使得细胞分裂克隆的次数增加。 端粒酶维持着端粒的长度,它在胚胎干细胞中高度表达,使得胚胎干细胞不断进行分裂

研发成果 1.美国《发现》杂志报道,首个以端粒为靶标的片剂已经在美国上市,预计具有延缓衰老作用的药物可在15年内获得美国食品和药物管理局(FDA)的批准。生物学家一直试图通过阻断端粒变短的机制来控制人体衰老进程。从2007年开始,首个以端粒为靶标的TA-65营养补充片剂就能够从医生那里买到。 制药商T.A.科学公司表示,他们的TA-65片剂能够提高人体的骨密度和免疫能力,对于与衰老相关的生物标记物也有一定的作用,服用了这种片剂的人报告说,他们的运动、视觉和认知能力都有所增强。 2.在医疗方面的运用,以血管的内皮细胞为例,血管的内皮细胞在血流不断冲刷流动下,损伤极快,个体年轻时周围组织可以不断提供新的细胞来修补血管管壁的损伤,一旦个体年老以后,损伤周围无法提供新的细胞来修补,动脉也就逐渐走向硬化的病征。若是周围组织中细胞的端粒酶被活化,端粒因此而延长,细胞分裂次数的增加,使得周围组织不断提供新的细胞来填补血管的损伤,因而能够延缓因血管硬化所造成的衰老表征。就如同寻找端粒酶抑制剂的基本理论,科学家也正积极地利用相同的策略,同时找寻端粒酶的活化剂。

问题与未知 ? 1.有人说端粒与端粒酶的应用让人类看到了长生不老的曙光,或许有一天人类真的会永生 2.目前更多的许多科学家主张细胞衰老分子机制的主流假说,即细胞内自由基积累(自由基很活跃,会攻击细胞)引起氧化性损伤。 ? 1.整体来说,老化和癌症的发生机制要比我们想象中的复杂,由于它们属于多重因子所造成的疾病,单一方向的预防和治疗并不足以涵盖全部的病因,端粒和端粒酶的研究只是探讨老化机制中的一环而已。 2.目前人类对端粒和端粒酶的研究还处于初级阶段,关于端粒许多潜在的作用还并不知道,所以,细胞衰老的机制我们还并不能定论,随着科学技术的发展,有一天我们终将会破解这一切的奥妙,用精湛的科技来造福于人类。

谢谢