生物电分析化学 Electroanalytical Chemsitry and Its Biological Applications 主讲人:刘宏 教授 2014年秋
个人简介 东南大学教授 入选中组部“青年千人计划” 美国德州大学奥斯汀分校,博士后 美国德州大学奥斯汀分校,博士(全美排名第五) 2014 东南大学教授 入选中组部“青年千人计划” 2013 美国德州大学奥斯汀分校,博士后 项目co-advisor: Ian Richards博士(早孕试纸的发明人之一) 2012 美国德州大学奥斯汀分校,博士(全美排名第五) 导师:Richard M. Crooks教授,化学系主任 创造了提前1.5年取得博士学位的院系记录 2009 南京大学,硕士 导师:鞠熀先教授,生命分析化学国家重点实验室主任 肿瘤标志物免疫分析 2006 南京大学,学士 2002
Austin, Texas 美国本土最大的州 美国总统小布什、big bang theory中谢耳朵的故乡 Austin是Texas的首府 UT Austin是美国校园面积最大的大学之一
Austin, Texas Silicon hill & live music capital of the world
课题组 课题组网页:www.liuhong.info ,邮箱:liuh@seu.edu.cn 主要从事与移动医疗检测相关的基础和应用研究 研究方向: 医疗诊断相关传感材料、方法与器件 移动医疗系统软硬件及大数据 欢迎感兴趣的同学联系我们。 ISBBN国际会议,长沙2014.5
Syllabus 课程大纲 双语教学 开卷考试 成绩: 作业40分+考试60分 教师邮箱: liuh@seu.edu.cn 课程网页: www.liuhong.info (Class)
Syllabus 课程大纲 Overview of electrochemistry(电化学概论) Electrode potential/kinetics (电极电位/反应动力学) Mass transfer(传质过程) Potential step/sweep techniques (电势阶跃/扫描技术) Ultra-microelectrode (超微电极,UME) Scanning electrochemical Microscope (扫描电化学显微镜,SECM) Finite-element simulation of electrochemical processes (电化学过程的有限元模拟) Applications:biomedical diagnostics, sensors, biofuel cell, brain research and single-cell studies(实际应用: 生物医学诊断、传感器、生物燃料电池、脑科学、单细胞研究)
Textbook 教科书 Allen Bard 教授 2013美国国家科学奖章 巴德(Bard A.J.),福克纳(Faulkner L.R.)著,邵元华 等译 化学工业出版社 2005-5-1
Electrochemistry Electrochemistry is the study of chemical reactions which take place at the interface of an electrode, usually a solid metal or a semiconductor, and an ionic conductor, the electrolyte. These reactions involve electric charges moving between the electrodes and the electrolyte (or ionic species in a solution). Thus electrochemistry deals with the interaction between electrical energy and chemical change.
Overview of electrochemistry Electrochemical cell (electrolytic, galvanic) Half cell and standard reduction potential Nernst equation Three-electrode cell Potential step techniques (chronoamperometry, chronocoulometry) Potential sweep techniques (LSV, CV)
Electrochemical cell Spontaneous Non-spontaneous Generate power Cell voltage > 0 Non-spontaneous Consume power Cell voltage < 0
Electrochemical cell Battery discharge: galvanic cell Battery charge: electrolytic cell
Half Cell 1. E = 0.340 V 2. E = -0.763 V Cell voltage: 0.340 V - (-0.763 V) = 1.103 V thermodynamic, at standard conditions
Nernst Equation E0’ – standard reduction potential R – gas constant R=8.314 (J/mol/K) T- absolute temperature T=273.15+t (K) n – electron transferred F – Faraday constant F= 96485 (C/mol) Co(x=0) – concentration of oxidized species CR(x=0) – concentration of reduced species X=0 means “on the electrode surface”
Reference Electrode E0’= 0.222 V vs. NHE
Three-Electrode Cell Two-electrode cell: Three-electrode cell: iR drop: EiRs= iRs If Rs=100 Ω, i=1mA, EiRs= 0.1V Faraday‘s laws: n is number of moles (n = m/M) t is the total time the constant current was applied. z is the no. of electrons transferred.
Potential Step Experiments Nonfaradaic processes charging/discharging Faradaic processes redox (reducing/oxidizing) events
Non-Faradaic Processes
Potential Step Experiments
Faradaic Processes Nernst-Plank Equation: Diffusion: Migration: Convection: If the solution is kept still and excess supporting electrolyte (KCl or KNO3) is added to the solution, the contribution of convection and migration can be negligible .
Potential Step Techniques CO* O R Chronoamperometry: CO(x=0) O + ne- R Cottrell equation for a planar electrode: DO: diffusion coefficient of O CO: concentration of O
Potential Sweep Techniques
Non-Faradaic Processes Potential Sweep:
Faradaic Processes
Assignment Select two half cells listed in the table on Page 13 to construct (a) an electrolytic cell and (b) a galvanic cell. Write down the anodic, cathodic and overall reactions. Calculate the cell voltages at (a) standard conditions and (b) if the concentration of every solute is 1.00 mM. Explain why we want to use a three electrode system in a potential-step experiment. A 0.1 cm2 electrode with Cd=20 mF/cm2 is subjected to a potential step under conditions where Rs is 1, 10, 100 Ω. In each case, what is the time constant, and what is the time required for the double-layer charging to be 95% complete? Consider the nernstian half-reaction: the i-E curve for a solution at 25 0C containing 2.00 mM A3+ and 1.00 mM A+ in excess electrolyte shows il,c = 4.00 mA and il,a = -2.40 mA. Sketch the i-E curve for this system. 2周后上课前提交电子版或者纸质版。即本次作业29日前交。