2009---2010高考复习 第七章、动量、动量守恒 第5课 专题:碰撞中的动量守恒 2010、3 邵东一中 曾利明.

Slides:



Advertisements
Similar presentations
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
Advertisements

§ 4-6 碰 撞 一、碰撞 1、概念 两个或两个以上的物体相遇,且相互作用持续一个极短暂的时间,这种现象称为碰撞。 2、特点
碰撞 两物体互相接触时间极短而互作用力较大
§4.6 对心碰撞 §4.6.1关于对心碰撞的基本公式 §4.6.2完全弹性碰撞·查德威克发现中子 §4.6.3完全非弹性碰撞
教学基本要求 明确冲量是力对时间的积累效应,掌握动量原理,注意动量的瞬时性、矢量性和相对性。
第一节 物体的碰撞.
探究碰撞中的不变量.
带电小球的碰撞 讲解人:唐浩栋 (信科0901) 指导老师:史彭.
定时检测 动量守恒定律及其应用 1.(2009·全国Ⅰ·21)质量为M的物块以速度v运动,与质量为m的静止物块发生正碰碰撞后两者的动量正好相等,两者质量之比M/m可能为 ( ) A.2 B.3 C.4 D.5 解析 由题意知:碰后两物体运动方向相同,动量守恒Mv=Mv1+mv2又Mv1=mv2得出.
功能原理 机械能守恒 第03-2讲 第三章 动量守恒和机械能守恒 §3-4 动能定理 本次课内容 §3-5 保守力与非保守力 势能
动量守恒条件 动量守恒定律的各种表达式 分方向动量守恒专题 平均动量守恒专题 动量守恒定律进行动态分析 爆炸、碰撞和反冲专题
碰撞分类 一般情况碰撞 1 完全弹性碰撞 动量和机械能均守恒 2 非弹性碰撞 动量守恒,机械能不守恒.
第二节 动量守恒定律 一、推导:(99年高考) 试在下述情况下由牛顿定律导出动量守恒定律:系统是两个质点,相互作用力是恒力,不受其它力,沿直线运动,要求说明每步的根据,以及式中各符号和最后结果中各项的意义。
选修3-5 动量守恒定律 原子结构与原子核.
动能定理 关山中学 史清涛.
第十六章 动量守恒定律 第4节 碰 撞.
高中物理 选修3—5 十六 第 章 动量守恒定律 第三节 动量守恒定律 寿县安丰高中 赵 玉 龙.
碰撞打靶实验 设计性实验 赵家群 讲师 理学院物理实验中心.
第四章 动 量 定 理 返回主目录.
第一节 动量守恒定律及其应用.
第三章 运动的守恒定律.
第六讲 动 量.
动量守恒定律 版权所有—庞留根 , 版权所有-庞留根.
选修3-5 第一章 动量守恒定律及其应用.
选修3-5 第一章 动量守恒定律及其应用.
§4.6 对心碰撞 一、 关于对心碰撞的基本公式 二、 完全弹性碰撞 三、 完全非弹性碰撞 四、 非完全弹性碰撞.
高中物理 选修3—5 十六 第 章 动量守恒定律 选修3-5第十六章动量守恒定律 16.3 动量守恒定律.
7-3 动能 动能定理.
选修3-5第一章《动量守恒研究》第三节 科学探究--一维弹性碰撞
第三节 动量守恒定律.
高三物理二轮专题复习研究 朱建廉 南京市 金陵中学.
16.1 实验:探究碰撞中的不变量 水上电动碰碰船.
第三节 动量守恒定律 在碰撞中的应用 王祝敖.
碰撞特点:两物体在碰撞过程中,它们之间相互作
第七章第四节动量守恒定律 ..
■ 动量守恒实验探究器 --- 荣获全国一等奖
高一下 复习 ——动量和能量.
动量守恒定律的综合应用 宝鸡石油中学 牛 虹.
动量守恒定律 涟源市立珊中学:刘季春.
高考复习 第二轮能力专题: 三种典型力学模型的分析 2007、3.
第十六章 动量守恒定律 专题: 动量守恒定律的应用 宣城中学物理组:王怀鹏.
从 碰 撞 问 题 谈 起 主讲人: 姜伟 清华大学.
第六章 动量守恒定律及其应用 1.动量、动量守恒定律及其应用 Ⅱ 2.弹性碰撞和非弹性碰撞 Ⅰ 实验:验证动量守恒定律.
例7-1 荡木用两条等长的钢索平行吊起,钢索的摆动规律为j= j 0sin(pt/4)。试求当t=0和t=2s时,荡木中点M的速度和加速度。
第三讲 动量和能量 牛顿运动定律与动量观点和能量观点通常称作解决力学问题的三把金钥匙。其实它们是从三个不同的角度来研究力与运动的关系。解决力学问题时,选用不同的方法,处理问题的难易、繁简程度可能有很大差别,在很多情况下,用动量和能量的观点来解题,会更快捷、更有效。
乒乓球回滚运动分析 交通902 靳思阳.
第8章 静电场 图为1930年E.O.劳伦斯制成的世界上第一台回旋加速器.
2.1.2 空间中直线与直线 之间的位置关系.
看一看,想一想.
线段的有关计算.
必修1 第四章 牛顿第二定律的应用 --瞬时性问题 必修1 第四章 牛顿第二定律的应用--瞬时性问题
力的累积效应 对时间的积累 对空间的积累 一 冲量 质点的动量定理 动量 冲量 力对时间的积分(矢量)
第四章 一次函数 4. 一次函数的应用(第1课时).
3.3 垂径定理 第2课时 垂径定理的逆定理.
第四章 机械能和能源 复 习 会理一中.
注意:这里的F合为沿着半径(指向圆心)的合力
第15章 量子力学(quantum mechanics) 初步
整体法隔离法 牛顿运动定律的应用 -----整体法、隔离法 ——物理教研组课程资源(肖翠峰提供)
人教版选修3-5 第十六章 动量守恒定律 第2节 动量和动量定理 珲春二中 郑春植.
樂理教學                 茄苳國小蔡逸凡老師.
质点运动学两类基本问题 一 由质点的运动方程可以求得质点在任一时刻的位矢、速度和加速度;
第十二章 动量守恒定律 第1讲 动量定理 动量守恒定律.
专题复习(之三) 动能定理与机械能守恒.
考点1、板块的临界问题 【例1】木板M静止在光滑水平面上,木板上放着一个小滑块m,与木板之间的动摩擦因数μ,为了使得m能从M上滑落下来,求下列各种情况下力F的大小范围。 m F M F M m (2) (1)
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
2.2.1质点的动量及动量定理 2.2 动量 动量守恒定律 1. 冲量 力在时间上的积累,即冲量。 恒力的冲量 (t1 → t2): z
3.2 平面向量基本定理.
带电粒子在匀强磁场中的运动 扬中市第二高级中学 田春林 2018年11月14日.
§3.1.2 两条直线平行与垂直的判定 l1 // l2 l1 ⊥ l2 k1与k2 满足什么关系?
庞留根.
Presentation transcript:

2009---2010高考复习 第七章、动量、动量守恒 第5课 专题:碰撞中的动量守恒 2010、3 邵东一中 曾利明

碰撞 知识简析 1.碰撞指的是物体间相互作用持续时间很短,而物体间相互作用力很大的现象. 在碰撞现象中,一般都满足内力远大于外力,故可以用动量守恒定律处理碰撞问题.按碰撞前后物体的动量是否在一条直线上有正碰和斜碰之分 2.一般的碰撞过程中,系统的总动能要有所减少,若总动能的损失很小,可以略去不计,这种碰憧叫做弹性碰撞.其特点是物体在碰撞过程中发生的形变完全恢复,不存在势能的储存,物体系统碰撞前后的总动能相等。若两物体碰后粘合在一起,这种碰撞动能损失最多,叫做完全非弹性碰撞.其特点是发生的形变不恢复,相碰后两物体不分开,且以同一速度运动,机械能损失显著。在碰撞的一般情况下系统动能都不会增加(有其他形式的能转化为机械能的除外,如爆炸过程),这也常是判断一些结论是否成立的依据.

知识简析 3.弹性碰撞 题目中出现:“碰撞过程中机械能不损失”,就是弹性碰撞 设两小球质量分别为m1、m2,碰撞前后速度为v10、v20、v1、v2,碰撞过程无机械能损失,求碰后二者的速度. m1v10+m2v20=m1v1+m2v2 由以上两式得 v2-v1= v10-v20 即在弹性碰撞中分离速度等于接近速度。 由上三两式得

知识简析 仔细观察v1、v2结果很容易记忆, 当v20=0时 ①当v20=0时;m1=m2 时v1=0,v2=v10 这就是我们说的交换速度、动量和能量. ②当v20=0时;m1>>m2,v1=v10,v2=2v10.碰后m1几乎未变,仍按原来速度运动,质量小的物体将以m1的速度的两倍向前运动. ③当v20=0时; m1<<m2,vl=-v10,v2=0.碰后m1被按原来速率弹回,m2几乎未动。

规律方法 【例2】甲物体以动量P1与静止在光滑水平面上的乙物体对心正碰,碰后乙物体的动量为P2,则P2和P1的关系可能是( ) A.P2<P1;B、P2= P1;C.P2>P1;D.以上答案都有可能 答案:ABCD 此题隐含着碰撞的多种过程.若甲击穿乙物体或甲、乙两物体粘在一起匀速前进时有P2<P1;若甲乙速度交换时有P2= P1;若甲被弹回时有P2>P1;四个答案都是可能的. 解析: 【例3】如图所示,一轻质弹簧两端各连接一质量均为m的滑块A和B,两滑块都置于光滑水平面上.今有质量为m/4的子弹以水平速度V射入A中不再穿出,试分析滑块B何时具有最大动能?其值为多少? 对子弹和滑决A根据动量守恒定律mv/4=5mv//4,所以v/=v/5. 解析: 当弹簧被压缩后又恢 复原长时,B的速度最大,具有的动能也最大,此过 程动能与动量都守恒 得:vB=2v/9,所以 B的动能为EkB=2mv2/81

规律方法 【例4】如图所示,在支架的圆孔上放着一个质量为M的木球,一质量为m的子弹以速度v0从下面竖直向上击中木球并穿出,使木球向上跳起高度为h,求子弹穿过木球后上升的高度. M m V0 把木球和子弹作为一个系统研究,在子弹 和木球相互作用时间内,木球和子弹要受到重 力作用,显然不符合动量守恒的条件。但由于 子弹和木球间的作用力(内力)远大于它们的重力(外力),可以忽略重力作用而认为系统动量守恒。 解析: 设子弹刚穿过木球时,子弹的速度为v1,木球的速度为v2,竖直向上为正方向. 对系统,据动量守恒:mv=mv1+Mv2 木球获得速度v2后,上升的过程机械能守恒:½Mv22=Mgh 两式联立得 子弹射穿木球后的上升过程机械能守恒:½mv12=mgH,将v1代 入得子弹上升的最大高度:

(广东卷)20. (17分)如图所示,固定的凹槽水平表面光滑,其内放置U形滑板N,滑板两端为半径R=0 (广东卷)20.(17分)如图所示,固定的凹槽水平表面光滑,其内放置U形滑板N,滑板两端为半径R=0.45 m的1/4圆弧而,A和D分别是圆弧的端点,BC段表面粗糙,其余段表面光滑,小滑块P1和P2的质量均为m,滑板的质量M=4 m.P1和P2与BC面的动摩擦因数分别为μ1=0.1和μ2=0.4,最大静摩擦力近似等于滑动摩擦力,开始时滑板紧靠槽的左端,P2静止在粗糙面的B点,P1以v0=4.0 m/s的初速度从A点沿弧面自由滑下,与P2发生弹性碰撞后,P1处在粗糙面B点上,当P2滑到C点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P2继续滑动,到达D点时速度为零,P1与P2视为质点,取g=10 m/s2.问: (1)P2在BC段向右滑动时,滑板的加速度为多大? (2)BC长度为多少?N、P1和P2最终静止后,P1与P2间的距离为多少?

解析:(1)P1滑到最低点速度为 ,由机械能守恒定律有: 解得: P1、P2碰撞,满足动量守恒,机械能守恒定律, 设碰后速度分别为 、 解得: =5m/sP2向右滑动时,假设P1保持不动,对P2有: (向左)对P1、M有: 此时对P1有: 所以假设成立。

(2)P2滑到C点速度为 ,由 得 P1、P2碰撞到P2滑到C点时,设P1、M速度为v,对动量守恒定律: 解得: 对P1、P2、M为系统: 代入数值得: 滑板碰后,P1向右滑行距离: P2向左滑行距离: 所以P1、P2静止后距离:

规律方法 【例6】如图所示,一辆质量M=2kg的平板车左端放有质量m=3kg的小滑块,滑块与平板车之间的动摩擦因数µ=0.4,开始时平板车和滑块共同以v0=2m/s的速度在光滑水平面上向右运动,并与竖直墙壁发生碰撞,设碰撞时间极短且碰撞后平板车速度大小保持不变,但方向与原来相反.平板车足够长,以至滑块不会滑到平板车右端.(取g=10m/s2)求: (1)平板车第一次与墙壁碰撞后向左运动的最大距离; (2)平板车第二次与墙壁碰撞前瞬间的速度v2; (3)若滑块始终不会滑到平板车右端,平板车至少多长. 平板车第一次与竖直墙壁发生 碰撞后速度大小保持不变,但方向与 原来相反.在此过程中,由于时间极短,故滑块m的速度与其在车上的位置均未发生变化. 解析:

规律方法 由于相对运动,滑块m和平板车间将产生摩擦力,两者均做匀减速运动,由于平板车质量小,故其速度减为0时,滑块m仍具有向右的不为0的速度,此时起,滑块m继续减速,而平板车反向加速一段时间后,滑块M和平板车将达到共同速度一起向右运动,与竖直墙壁发生第二次碰撞…… (1)设平板车第一次碰墙壁后,向左移动s,速度减为0.(由于系统总动量向右,平板车速度为0时,滑块还具有向右的速度) 根据动能定理有:-½µmgs1=0-½Mv02 代入数据得: (2)假如平板车在第二次碰墙前还未和滑块相对静止,那么其速度的大小肯定还是2m/s,滑块的速度则大于2m/s,方向均向右,这显然不符合动量守恒定律.

规律方法 所以平板车在第二次碰墙前肯定已和滑块具有共同速度v2. 即平板车碰墙瞬间的速度 mv0-Mv0=(M+m)v2, (3)平板车与墙壁第一次碰撞后到滑块与平板车又达到共同速度v前的过程,可用图(a)(b)(c)表示. 图(a)为平板车与墙碰撞后瞬间滑块与平板车的位置;图(b)为平板车到达最左端时两者的位置;图(c)为平板车与滑块再次达到共同速度时两者的位置.

规律方法 在此过程中滑块动能减少等于摩擦力对滑块所做功µmgs/,平板车动能减少等于摩擦力对平板车所做功µmgs//(平板车从B到A再回到B的过程中摩擦力做功为0),其中s' ,s"分别为滑块和平板车的位移. 滑块和平板车动能总减少为µmgL,其中L=s/+s//为滑块相对平板车的位移.此后,平板车与墙壁发生多次碰撞,每次情况与此类似,最后停在墙边.设滑块相对平板车总位移为L,则有: 1 2 (M+m)v02=µmgL, L即为平板车的最短长度