第四章 随机变量的数字特征 数学期望 方差 * 协方差与相关系数 大数定律与中心极限定理.

Slides:



Advertisements
Similar presentations
1 教師敘薪 Q & A 教師敘薪 Q & A 新竹縣立新湖國中 陳淑芬 新竹縣立自強國中 楊美娟
Advertisements

103 學年度縣內介聘申請說明會 南郭國小 教務主任張妙芬.  重要作業日程 : 1 、 5/1( 四 ) 前超額學校 ( 含移撥超額 ) 備文函報縣府教 育處輔導介聘教師名單 2 、 5/7( 三 ) 超額教師積分審查( 9 : : 00 、 13 : : 00 )。 3.
大學甄選申請入學 〃備審資料 〃面試. 確認你的追求對象 學校環境概況 系別特質 有無交換學生 未來出路 性質相似的科系要清楚之間的差別 ex: 社會福利學系,社會工作學系, 社會學系.
人文行動考察 羅東聖母醫院 老人醫療大樓 吳采凌 黃玨宸 劉映姍 陳嫚萱.
焦點 1 陸域生態系. 臺灣的陸域生態系 臺灣四面環海 黑潮通過  高溫, 雨量充沛 熱帶, 亞熱帶氣候.
資源問題與環境保育 第 6 章. 學完本章我能 ……  知道中國土地資源的問題與保育  了解中國水資源的問題與保育  知道中國森林資源的問題與保育  能分析自然環境和人文環境如何影響人類 的生活型態  說舉出全球面臨與關心的課題.
商管群科科主任 盧錦春 年 3 月份初階建置、 4 月份進階建置、 5 月份試賣與對外營業。
景美樣品房工程變更 / 追加請款 / 說明 102/08/09 樣品房停工 102/10/10 樣品房完工 102/09/26 向工務部提出 追加工程估價單 102/10/25 經工務部審核 轉送採發部門 102/09/03 工地會議 確認後續施工方式 102/11/ /11/ /12/09.
統計之迷思問題 保險 4B 張君翌. 迷思問題及教學者之對策 常見迷思概念教學者之對策 解題的過程重於答案 例 : 全班有 50 位同學,英文不及格的有 15 人,數學不及格的有 19 人,英文與 數學都及格的有 21 人。請問英文與數 學都不及格的有幾人? 老師常使用畫圖來解決這樣的問題,英文和.
社團法人台南市癲癇之友協會 講師:王乃央老師
寓言 何謂寓言? 寓言中的主角選擇 以動物為主角,形象分析—以成語及諺語中來歸納動物形象 以人為主角,形象分析
第七章 外營力作用 第一節 風化 第二節 崩壞 第三節 侵蝕與堆積.
解析几何 空间直角坐标系 阜宁县东沟中学高一数学组.
物理治療師之僱傭關係 九十二年四月十二日.
勿讓權利睡著- 談車禍之損害賠償與消滅時效.
二、開港前的經濟發展 (一)土地開墾和農業發展 1.漢人移民的遷徙與拓墾 (1)遷徙 A.居住區 a.泉州人最多:沿海
設計新銳能量輔導 實習期中感想 實習生:賴美廷 部落格:TO13004.
日本的〈地獄劇〉 與 中國的〈目連戲〉.
選擇性逐字紀錄 臺北市立教育大學 張 德 銳.
授課教師:羅雅柔 博士 學員:吳沛臻/邱美如/張維庭/黃茹巧
§2 线性空间的定义与简单性质 主要内容 引例 线性空间的定义 线性空间的简单性质 目录 下页 返回 结束.
國小教師檢定經驗分享 分享者:胡瑋婷 現職:國語日報語文中心寫作班教師 閱讀寫作營教材編輯及任課講師 榮獲「教育部教育實習績優獎」全國第三名.
民主政治的運作
教育與學習科技學系 103學年度課程說明 103年9月2日.
國有不動產撥、借用法令與實務 財政部國有財產局 接收保管組撥用科 蔡芳宜.
3.1 随机事件及其概率 3.2 随机变量及其概率分布 3.3 大数定律与中心极限定理
公務人員 育嬰留職停薪權益.
一、平面点集 定义: x、y ---自变量,u ---因变量. 点集 E ---定义域, --- 值域.
大學教、職員之法義務規範與法律效果 台南地檢署林仲斌.
第三課 政府的組織、功能與權限 一、內閣制 壹、民主國家的政府體制 二、總統制 三、混合制 四、小結 一、前言 貳、我國的中央政府體制
明代開國謀臣 劉伯溫 組員:吳政儒 林天財 王鈴秀 陳冠呈 施典均 李孟儒.
中央與地方教育權限 第八組 王湘婷 邱淑婷 全 彥 洪英博
中國宦官 鄭永富 鄭雅之 莊尉慈.
盧世欽 律師 鼎禾律師聯合事務所 民國 一○四 年 九 月 十八 日
簡報大綱 壹、親師溝通 貳、學生不當行為的處理 參、學生輔導 肆、個案研討分析.
管理学基本知识.
福山國小 100學年度 新生家長始業輔導.
貨物稅稅務法令介紹 竹東稽徵所.
滁州学院首届微课程教学设计竞赛 课程名称:高等数学 主讲人:胡贝贝 数学与金融学院.
九年一貫課程綱要微調 健康與體育領域召集人 「課綱微調轉化」研習
公私立大學特色介紹 (以第二類組為主) 報告人:吳婉綺.
危險情人的特徵 危險情人的特徵.
機關團體所得稅申報實務 中區國稅局苗栗縣分局第一課林天琴.
幼兒環境學習規畫 期末報告 指導老師:蔡其蓁 老師
拾貳、 教育行政 一、教育行政的意義 教育行政,可視為國家對教育事務的管理 ,以增進教育效果。 教育行政,乃是一利用有限資源在教育參
雕塑你我他.
課程銜接 九年一貫暫行綱要( )  九年一貫課程綱要( ) 國立台南大學數學教育系 謝 堅.
2.4 二元一次方程组的应用(1).
財政部臺灣省北區國稅局中壢稽徵所 各類所得扣繳暨免扣繳法令.
「103年寒假教育優先區中小學生營隊」 校外補助計畫申請說明會.
水土保持法中「連續處罰」及「限期改正」制度之法律研究
國有公用財產管理及被占用處理暨活化運用法規與實務(含座談) 104年度教育部暨部屬機關學校總務人員研習會-不動產管理班
9.1 圓的方程 圓方程的標準式.
第四章 随机变量的数字特征 §4 协方差及相关系数 协方差的定义 协方差的性质 相关系数的定义 相关系数的性质.
概率论与数理统计模拟题(3) 一.填空题 3且 1.对于任意二事件A 和 B,有P(A-B)=( )。 2.设 已知
教學演示教材: 〈信賴區間與信心水準的解讀〉
提升國民小學教師健康教育專業能力三年計畫
馬公高中100學年101大學博覽會 專題演講 演講主題 如何選填適合自己的大學科系
第二章 随机变量及其分布 热点问题剖析.
性騷擾防治宣導.
創業環境分析與 風險評估 赫斯提亞負責人:謝馥仲先生 主講 演講時間 : 2008/05/01.
葉脈標本的創意製作.
穿出自我… 高一家政.
國民年金 np97006.
第四章 随机变量的数字特征 关键词: 数学期望 方差 协方差、相关系数 其它数字特征.
財政四 徐瑜鴻 財政四 林博硯 財政四 陳玄恩 財政四 王張皓鈞 財政四 李定瑜
品格:熱 性格的培養6親熱就,48頁。 (一)什麼是熱.
用加減消去法解一元二次聯立方程式 台北縣立中山國中 第二團隊.
第二节 偏 导 数 一、 偏导数概念及其计算 二 、高阶偏导数.
Presentation transcript:

第四章 随机变量的数字特征 数学期望 方差 * 协方差与相关系数 大数定律与中心极限定理

Mathematical Expectation 数学期望的引例 Mathematical Expectation 例如:某7人的高数成绩为90,85,85,80,80, 75,60,则他们的平均成绩为 以频率为权重的加权平均

Mathematical Expectation 离散型随机变量 定义 设离散型随机变量的概率分布为 随机变量X的数学期望,记作E(X),即

数学期望的计算 已知随机变量X的分布律: 例 X P 4 1/4 5 1/2 6 求数学期望E(X) 解

连续型随机变量的数学期望E(X) 连续型随机变量 定义 设连续型随机变量X的概率密度为 f (x), 则 即

数学期望的计算 例 已知随机变量X的密度函数为 求数学期望。 解

数学期望的意义 E(X)反映了随机变量X取值的“概率平均”,是X的 可能值以其相应概率的加权平均。 试验次数较大时,X的观测值的算术平均值 数学期望又可以称为期望值(Expected Value), 均值(Mean)

二维随机变量的数学期望及边缘分布的数学期望 (X,Y)为二维离散型随机变量 (X,Y)为二维连续型随机变量

设(X,Y)的联合密度为 例 (1) 求k (2) 求X和Y的边缘密度 (3) 求E(X), E(Y).

解 (1)由 得 1 3 所以 时 (2) 所以

时 1 3 (3)

(3)另解 1 3 无需求 边缘分布密度函数

随机变量的函数的数学期望 定理 1:一维情形 设 是随机变量 X的函数, 离散型 概率密度为 连续型

服从 已知 上的均匀分布,求 的数学期望。 例 解 因为 所以

随机变量的函数的数学期望 定理 2:二维情形 设 是随机变量 X, Y的函数, 离散型 连续型 联合概率密度为

例 设相互独立的随机变量X,Y的密度函数分别为 求E(XY) 1 5 解

数学期望的性质 . C 为常数 . . 相互独立时 当随机变量

练一练 设(X,Y)在由4个点(0,0)(3,0),(3,2), (0,2)决定的矩形域内服从均匀分布,求E(X+Y),E(X2) E(Y2),E(XY). 3 2 答案:

若X 服从参数为 p 的0-1分布, 则E(X) = p 0-1分布的数学期望 分布律 X服从0-1分布,其概率分布为 X P 0 1 1-p p P(X=1)=p P(X=0)=1- p 数学期望 若X 服从参数为 p 的0-1分布, 则E(X) = p

If X~B( n, p ), then E(X)= np 二项分布的数学期望 分布律 X服从二项分布,其概率分布为 数学期望 二项分布可表示为 个0-1分布的和 其中 则 If X~B( n, p ), then E(X)= np

泊松分布的数学期望 分布律 数学期望 If , then

均匀分布的期望 分布密度 数学期望

正态分布的期望 分布密度 X~ N (μ,σ2) 数学期望

指数分布的期望 分布密度 数学期望

数学期望在医学上的一个应用 分析: 设随机抽取的10人组所需的化验次数为X 我们需要计算X的数学期望,然后与10比较 An application of Expected Value in Medicine 考虑用验血的方法在人群中普查某种疾病。集体做法是每10个人一组,把这10个人的血液样本混合起来进行化验。如果结果为阴性,则10个人只需化验1次;若结果为阳性,则需对10个人在逐个化验,总计化验11次。假定人群中这种病的患病率是10%,且每人患病与否是相互独立的。试问:这种分组化验的方法与通常的逐一化验方法相比,是否能减少化验次数? 分析: 设随机抽取的10人组所需的化验次数为X 我们需要计算X的数学期望,然后与10比较

注意求 X期望值的步骤! 先求出化验次数X的分布律。 化验次数X的可能取值为1,11 (X=1)=“10人都是阴性” (X=11)=“至少1人阳性” 结论: 分组化验法的次数少于逐一化验法的次数

问题的进一步讨论 1、概率p对是否分组的影响 若p=0.2,则 当p>0.2057时,E(X)>10 2、概率p对每组人数n的影响 当p=0.1时,为使 当p=0.2时,可得出n<10.32,才能保证 EX<10.

例 独立地操作两台仪器,他们发生故障的概率分别为p1和p2.证明:产生故障的仪器数目的数学期望为 p1 + p2 解 设产生故障的仪器数目为X 则X的所有可能取值为0,1 所以