三维光晶格和原位测量-物理所 BEC研究展望 王如泉 中国科学院物理研究所 第五届全国冷原子物理和量子信息青年学者学术讨论会 兰州大学 2010. 8. 4
Outline Why is in situ imaging important The BEC setup at IOP and our in situ imaging plan The 87Rb-40K-23Na(6Li) project at IOP
BEC – coherent macroscopic matter wave Vortex in BEC (JILA group, 2000) BEC of 87Rb (JILA group, 1995) Ideal platform for Ultra low temperature quantum physics Matter wave laser (MPQ group, 2000) lamp laser Matter wave interference (MIT group, 1997) 3
Quantum simulation of many body physics 什么是量子仿真? 强关联多体物理: 是物理学尚未攻克的难关,又是决定诸多材料物性的关键(铁磁性,巨磁电阻,重费米子,高温超导等) 原因: 多体波函数,全量子系统 非线性系统,无法用微扰论处理 数值仿真 计算资源随系统粒子数指数增长 解决方案之一: 用量子计算机仿真量子系统 新材料探索: 超导, 磁性等 量子计算机: 光晶格中的原子气 基本模型研究: Hubbard模型, Heisenberg模型等 Qi Zhou et al, PRL 103, 085701 (2009) 特殊的量子计算机-量子仿真器
Quantum simulation of many body physics Qi Zhou et al, PRL 103, 085701 (2009)
First quantum simulation experiment looks beautiful, but faces a lot of questions Super fluid to Mott insulator phase transition in 3-D optical lattice Greiner M., Mandel O., Esslinger T., Hansch T. W. & Bloch I., Nature 415, 39–44 (2002). 3D optical lattice Quantum degenerate Bose/Fermi system below micro Kelvin Optical lattice provide periodical potential with no defects Atom-atom interaction can be described by a simple s-wave scattering length Easily tunable Hubbard Model parameters Artificial toy models: 1D, 2D, spinor, etc Lack of a clear diagnostic of how to identify phases Complications due to coexistence of different phases in the same confining potential Lack of thermometry of the Bose gas in the optical lattice
Time of flight (TOF) imaging
TOF imaging of BEC @ IOP BEC的相变过程 突出平台性 0ms 10ms 20ms 30ms 各向异性膨胀
Problem with TOF measurement Qi Zhou et al, PRL 103, 085701 (2009)
In-situ imaging: corner stone setting experiment by Chin’s group at Chicago Absorption imaging of density profile of thin layer cold atoms in 2-D optical lattice with a high numerical aperture imaging lens. Gemelke, N., Zhang, X., Hung, C.-L. & Chin, Nature, 460, 995 (2009)
I. Bloch’s group’s work to resolve single lattice site I. Bloch et al, Nature, 467, 68(2010)
Melting of a Mott insulator
M. Greiner’s group to achieve single lattice resolution W. S. Bakr, J. I. Gillen, M. Greiner et al, Nature, 462, 74(2009)
Wedding cake structure of the Mott insulator W. S. Bakr, M. Greiner et al, Science, 329, 547(2010)
What can we achieve with in situ imaging of number density Determine the superfluid density, temperature and chemical potential of the trapped system with high accuracy, critical for mapping out the phase diagram at finite temperature Qi Zhou et al, PRL 103, 085701 (2009) Tin-Lun Ho and Qi Zhou,NATURE PHYSICS 6, 131(2009)
Single Chamber BEC @ IOP
Single chamber design vs Double MOT design: advantages and disadvantages Vacuum system 1 chamber and 1 set of pumping system 2 chambers and 2 sets of pumping system Laser cooling system 6 laser beams 13 laser beams Optical access 4 free directions 2D optical lattice 3 free directions 1D optical lattice No of atoms 1x105 (2-5)x105
Light-Induced Atomic Desorption for loading a Rubidium Magneto-Optical Trap
MOT loading at different LED current
Vacuum restoring time Fast decay 2s Slow decay 50s
Quadruple trap Phys. Rev. A, 35, 1535(1987)
Magnetic atom transfer belt 冷原子团 转移线圈 Phys. Rev. A, 63, 031401(2001)
Transfer coils geometry 线圈 内半径mm 外半径mm 厚度mm 线直径 mm 填充率 MOT 30.0 50.0 15.0 1.6 62% TC 10.0 40.0 QUIC 重力方向 保持转移方向的磁场梯度为75G/cm
Field Plot during the transferring process
Transfer coil 3D lattice and Ultra high resolution in situ imaging MOT BEC lattice Imaging lens CCD camera CCD camera
Product specification Large numerical aperture long working distance objectives Group Objective M. Greiner 18mm 0.55(to 0.8) I. Bloch 13mm 0.68(Leica) C. Chin Resolution 3-4um D. S. Weiss 16mm 0.55 M. Karski 0.29 Company Product specification Work distance/mm NA Zeiss Epiplan-Neofluar 50x/0.55 HD DIC M27 9.0 0.55 Olympus SLMPLN100x 7.6 0.6 Leica HCX PL FLUOTAR L 40x/0.60 CORR 3.3 Nikon ELWD 50x 8.7 Mitutoyo M Plan Apo 100x G Plan Apo 50x 6 15.08 0.7 0.5
EMCCD camera Spatial resolved single photon detection Group CCD M. Greiner EMCCD (Andor Ixon DU888) I. Bloch EMCCD C. Chin Not mentioned D. S. Weiss M. Karski
Princeton Instrument ProEM: 512B_eXcelon
Quantum degenerate polar molecules 玻色-费米混合系统(玻色子,费米子到极性分子) 异核偶极分子具有各向异性且长程的偶极-偶极相互作用,是对关联系统研究具有重要意义。 偶极晶体相变,多体偶极量子气,量子信息,超冷化学 量子简并 相干态转化 简并玻色-费米混合系统是得到超冷分子的最优手段 超冷分子的重要科学意义 New. J. Phys., 11, 055049(2009)
Great achievements and current difficulties 激发态冷分子制备 基态冷分子制备 超冷化学中的量子统计特性 简并偶极分子实验的关键障碍 铷-钾分子偶极矩太小 铷-钾分子在超冷碰撞中不稳定 Feshbach 共振合成激发态冷分子 激光 STIRAP 过程得到基态KRb 分子 为进一步蒸发冷却对超冷碰撞特性的研究 利用极化降低超冷碰撞损失 偶极分子的各向异性 Nature, 424, 47(2003), Science, 301, 1510 (2003), Phys. Rev. Lett. 100, 143201 (2008). Nature Physics 4, 622 (2008), Phys. Rev. Lett. 100, 143201 (2008), Science, 322, 231 (2008), Science, 327, 853 (2010), Nature, 464, 1324(2010)
The 87Rb-40K-23Na(6Li) project at IOP 偶极矩 (Debeye) 稳定性 ΔE(cm-1) Li-Na 0.56 -328 Li-K 3.6 -534 Li-Rb 4.2 -618 Li-Cs 5.5 -415 Na-K 2.8 74.3 K-Rb 0.6 -8.7 K-Cs 1.9 37.8 相对碰撞截面 Rb-Rb 1 K-Rb 2 Li-K 0.2 Li-Li 0.1 Na-Na 0.72 Na-K ? J. Chem. Phys. 122,204302 (2005) 40K-23Na具有更大的偶极矩和超冷化学反应的稳定性,是所有可能中的最佳组合
Vacuum system 23Na和7Li同一塞曼减速器和同一套染料激光 转移线圈以实现三维光晶格和原位测量 原位测量空间分辨优于2微米 磁阱
Laser cooling system 铷原子冷却激光系统 钾原子冷却激光系统 钠原子冷却激光系统 激光特点: 稳频 窄线宽(~1MHz) 大功率( ~200mW ) 时间控制(~us)空间模式 激光系统: Na的冷却所需589nm激光器没有半导体激光器提供,目前基于YAG和光纤激光的方案还不成熟。成熟的方案为染料激光,但是允许和维护要求很高,国内没有其他人做过。我在搭建li BEC实验中的冷却激光正是染料激光,有7年使用和维护的经验。采用染料激光也大大提高了系统的灵活度,可以同时适用于Na和Li的冷却。 我们获得了最新的780纳米-767纳米双色反射镜,可以大大提高铷和钾冷却系统的功率。 钠原子冷却激光系统
Cooling laser for Rb and K 25oC下自由运转波长783nm的激光管冷却到-50oC得到767nm,0.2nm/oC。 困难:冷却到-50C热负载很大且有结露问题, 解决方法:真空隔热和三级制冷。
Cooling laser for Lithium
cooling laser for Li
FP cavity signal Optic Spectrometer not injection locking 7mw injection 45°C 8mw injection 45°C Complete injection locking partial injection locking multimode Complete injection locking singlemode 224mw output
589nm dye laser for Na cooling 半导体激光的波长覆盖 Na冷却所需的589nm激光不能用半导体激光器 成熟的解决方案是染料激光 同时适用于Na(589nm)和Li (671nm)的冷却
Zeeman slower 减速器效能 塞曼减速器: 适合于原子量较小的原子,更好的差分真空泵浦 23Na和7Li的俘获速度不同 采用一个塞曼减速器给两种原子使用,尽管最高俘获速度不同,但是我们计算表明,只要优化得当,性能不会受影响。 原子传送带: 采用20对线圈实现原子的传送带,把原子从俘获去传送到蒸发区,由于传送路径可以转弯,避免了 传统推送光束的占用光路的问题,为三维光晶格和原位成像提供了可能。 23Na和7Li的俘获速度不同 但效能和俘获速度无关 23Na和7Li共用塞曼减速器 塞曼减速器轴向磁场优化结果
Atomic transferring belt 把原子从磁光阱转移到蒸发磁阱 为三维光晶格和原位测量等提供可能 研制重点: 复杂的大电流线圈控制电路
Thermal distribution simulation is very important for high performance magnetic trap
Feshbach coils 研制重点: 强磁场1000G 磁场稳定性<50mG(50ppm) 磁场快速扫描G/us 快速开启(ms) 强磁场的获得 超高的磁场稳定性要求 B0=1007.34G, ΔB=170mG Phys. Rev. Lett. 89, 283202 (2002)
Optical lattice 研制重点: 激光器:IPG单频光纤激光器 光功率:50W 束腰: 100 µm 激光的稳定性 超高光路稳定性 2D 3D 激光器:IPG单频光纤激光器 光功率:50W 束腰: 100 µm 研制重点: 激光的稳定性 超高光路稳定性 Nature, 453, 736 (2008) Nature physics,1,23(2005)
Thank you for your attention!