Origin of pulsar orthogonal polarization modes

Slides:



Advertisements
Similar presentations
Pulsar Workshop , NAOC1. Timing irregularities Timing noise: random fluctuation in pulse frequency with δν/ν < Glitch: pulse frequency.
Advertisements

FAST: Millisecond Pulsars and Binary Pulsars Chengmin Zhang FAST - National Astronomical Observatories 2015 – Guiyang/China.
期末考试作文讲解 % 的同学赞成住校 30% 的学生反对住校 1. 有利于培养我们良好的学 习和生活习惯; 1. 学生住校不利于了解外 界信息; 2 可与老师及同学充分交流有 利于共同进步。 2. 和家人交流少。 在寄宿制高中,大部分学生住校,但仍有一部分学生选 择走读。你校就就此开展了一次问卷调查,主题为.
第七课:电脑和网络. 生词 上网 vs. 网上 我上网看天气预报。 今天早上看了网上的天气预报。 正式 zhèngshì (报告,会议,纪录) 他被这所学校正式录取 大桥已经落成,日内就可以正式通车 落伍 luòw ǔ 迟到 chídào 他怕迟到,六点就起床了.
2011年度汇报 科技部973项目 《日地空间天气预报的物理基础与模式研究》 第六课题组:空间天气预报方法和技术的应用与集成研究
3 供需彈性與均衡分析.
太 陽 幾乎佔有全太陽系總質量的98%. 需要109個地球才能填滿整個太陽的圓盤面.
Study of the AMS-02 results
Unit 9 Have you ever been to an amusement park? Section A.
(复习课) 光学复习.
超新星遗迹和脉冲星成协系统 田文武 2009年7月于北京脉冲星夏校.
Chapter 8 Liner Regression and Correlation 第八章 直线回归和相关
綠色創意伙伴Green Creative Partner
版權所有 翻印必究 指導教授:林克默 博士 報告學生:許博淳 報告日期: 2011/10/24. 版權所有 翻印必究 Results and discussion The crystalline peak at 33° corresponds to the diffraction of the (200)
XI. Hilbert Huang Transform (HHT)
IEEE TRANSACTIONS ON MAGNETICS, VOL. 49, NO. 3, MARCH 2013
Early-type emission-line stars in LAMOST survey
What water is more suitable for nurturing the goldfish
Some Effective Techniques for Naive Bayes Text Classification
Platypus — Indoor Localization and Identification through Sensing Electric Potential Changes in Human Bodies.
Thinking of Instrumentation Survivability Under Severe Accident
Population proportion and sample proportion
广西大学—国家天文台天体物理与空间科学研究中心 China-VO and Astroinformatics
D. Halliday, R. Resnick, and J. Walker
華爾街的物理學家 混沌碰上華爾街.
99新課綱內容: 量子現象 1. 光電效應 1-1 黑體輻射 1-2 愛因斯坦 光電效應 1-4 光電效應的應用
Digital Terrain Modeling
Black Hole Shadow Image and Visibility Analysis of Sagittarius A*
HLA - Time Management 陳昱豪.
Step 1. Semi-supervised Given a region, where a primitive event happens Given the beginning and end time of each instance of the primitive event.
机器人学基础 第四章 机器人动力学 Fundamentals of Robotics Ch.4 Manipulator Dynamics
Fundamentals of Physics 8/e 29 - Current-Produced Magnetic Field
普通物理 General Physics 29 - Current-Produced Magnetic Field
Short Version :. 11. Rotational Vectors & Angular Momentum 短版:. 11
邻近宇宙线源对高能电子的贡献 毕效军 粒子天体中心,中科院高能所 山东大学国际交流中心,威海 2017/9/21-23.
Interval Estimation區間估計
塑膠材料的種類 塑膠在模具內的流動模式 流動性質的影響 溫度性質的影響
磁共振原理的临床应用 福建医科大学附属第一医院影像科 方哲明.
普通物理 General Physics 22 - Finding the Electric Field-I
辐射带 1958年:探险者一号、探险者三号和苏联的卫星三号等科学卫星被发射后科学家出乎意料地发现了地球周围强烈的、被地磁场束缚的范艾伦辐射带(内辐射带)。 这个辐射带由能量在10至100MeV的质子组成,这些质子是由于宇宙线与地球大气上层撞击导致的中子衰变产生的,其中心在赤道离地球中心约1.5地球半径。
Neutron Stars and Black Holes 中子星和黑洞
Quark Polarization in Relativistic Heavy Ion Collisions
句子成分的省略(1).
普通物理 General Physics 21 - Coulomb's Law
校園地震預警系統的建置與應用 林沛暘.
高性能计算与天文技术联合实验室 智能与计算学部 天津大学
Mechanics Exercise Class Ⅰ
星际闪烁和散射.
宇宙磁场的起源 郭宗宽 2016两岸粒子物理及宇宙学研讨会
脉冲星磁层中波的传播效应 王陈 国家天文台 2009年7月 2009年脉冲星暑期天文学校.
虚 拟 仪 器 virtual instrument
无碰撞磁重联多尺度动力学过程的三维全粒子模拟研究
Inter-band calibration for atmosphere
高考应试作文写作训练 5. 正反观点对比.
Q & A.
计算机问题求解 – 论题1-5 - 数据与数据结构 2018年10月16日.
Nucleon EM form factors in a quark-gluon core model
磁共振原理的临床应用.
Mechanics Exercise Class Ⅱ
Modeling Multi-wavelength Pulse Profiles for PSR B
Q1: How do we determine the crystal structure?
Fundamentals of Physics 8/e 22 - Finding the Electric Field-I
名词从句(4) (复习课).
怎樣把同一評估 給與在不同班級的學生 How to administer the Same assessment to students from Different classes and groups.
電流的瞬間變化,如何影響遠處的磁場(或電場)?
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
Principle and application of optical information technology
Gaussian Process Ruohua Shi Meeting
Start today. Change tomorrow.
BESIII MDC 模拟与调试 袁野 年粒子物理实验计算软件与技术研讨会 威海.
Presentation transcript:

Origin of pulsar orthogonal polarization modes Chen WANG P.F. WANG, Jinlin HAN National Astronomical Observatories, CAS FAST Pulsar Symposium 3, July 2-4, 2014, Shanghai, China

Outline Polarized Curvature Radiation in Pulsar Magnetosphere (with both emission and propagation). => naturally generate orthogonal polarization modes (OPM) Wang, Wang & Han, 2014 Distinguish orthogonal polarization modes of pulsar emission using spin axis and proper motion => constrain OPM model Wang 2014

Basic Physical Image of polarization evolution Pulsar magnetosphere 1) Rotating dipole 2) ±e plasma streaming along B field line 3) Lorentz factor of the plasma γ ~ 400; 4) Density of the plasma Ω k μ Propagation 1) O mode refraction 2) Adiabatic walking B Emission Curvature radiation 3

⊕ μ Ω B Two linear eigenmodes of wave in pulsar magentosphere k B O-mode X-mode ⊕ Ordinary mode (O-mode), n < 1 Extraordinary mode (X-mode), n ~ 1 The separation between the emission points of the O/X-mode waves Refraction of O-mode wave X O observer Ω μ X O B Observed O/X-mode components at given phase are incoherent !

Curvature Radiation Without co-rotation V0 // B V0 1/γcone 1/γcone 1/γ Classical model considered by Cheng & Ruderman 1979 B With co-rotation V // B V0 V B

Profiles with various impact angle Without co-rotation Emission beam Profiles with various impact angle Uniform Cone Core Patch 6

Profiles with various impact angle With co-rotation Emission beam Profiles with various impact angle Uniform Cone Core Patch 7

Conclusion for polarized curvature radiation in pulsar magnetosphere The O-mode refraction separate X and O-mode components. which cause: The observed X-mode and O-mode wave at given phase are emitted from incoherent region; The orthogonal mode happens naturally due to the change of the dominance of the two modes; X/O-mode components of CR have: almost the same magnitude without considering the co-rotation of plasma, which cause strong depolarization; very different distribution with co-rotation included, high LP can be observed. Refraction induced OPM perfers “O X O” modes sequence. May be checked by observation!

Distinguish orthogonal polarization modes of pulsar emission Orthogonal polarization mode for PSR B2020+28 Mean profile Polarization of single pulses V PA Which mode is it? O- or X-mode? L 90o PA 90o I Stinebring et al. (1984)

Rotating Vector Model O-mode X-mode Another well-known method to determine the spin axis depends on the linear polarization profile of radio emission. If the polarization profile could be described by rotating vector model, we can constrain the projected spin axis by the polarized angle in the center of the pulse. This has been attempted before for several times, but inconsistent results. The problem is polarization profile of most pulsars can not be cleanly described by RVM model, so they didn't have enough useful data with less uncertainty. For example, the map show a S-shape profile which can be well described by RVM, we can easily determine the polarization angle at the center of pulse. But most pulsars have profiles like this, it’s very hard to know where is the center of the pulse. O-mode X-mode

Two ways to constrain spin axis PWN of Vela: X-ray obs. Get spin axis directly by fitting the symmetric tori of PWNe around some young pulsars obtain spin axis of 15 pulsars by Ng & Romani 2004, 2007, 2008. Not avialable for normal pulsars without PWNe Using proper motion direction instead of spin axis according to spin-kick alignment Spin-kick alignment proved by Romani, Ng, Johnston, Wang, Noutsos et al. Proper motion measured by pulsar timing and interferometer obs. Brisken et al. 2002, 2003; Hobbs et al. 2005. Ng & Romani 2004 Spin-kick alignment of pulsars Noutsos et al. 2011

For 7 pulsars, O-mode dominate central intensity-peak region. (X O X) Mode distinguishment for 14 OPM-pulsars (with both believable PM and PA data) For 7 pulsars, O-mode dominate central intensity-peak region. (X O X) For 4 pulsars, X-mode dominate intensity-peak region. (O X O) For 3 pulsars, each mode dominates half profiles Polarization profiles comes from Johnston et al. 2005, 2007; Carr 2007; Han et al. 2009

Possible constrains on origin of OPM Refraction effect. O-X-O (4 pulsars) O mode refracted towards away from magnetic axis. Emission mechanism origin. Cheng & Ruderman 1979, X-O-X (7 pulsars) Central O-mode emission from parallel accelaration X-mode from curvature radiation dominates two wings Different OPM-pulsars may have different origin of OPM. PSR2020+28 X-mode O-mode X-mode

Summary Refraction of O-mode seperates the two eigenmodes and make them incoherent, which naturally causes OPM. X/O-mode components of curvature radiation have: almost the same magnitude without considering the co-rotation of plasma, which cause strong depolarization; very different distribution with co-rotation included, high LP can be observed. Modes sequence of OPM perfer “O X O” Polarization modes of 14 OPM-pulsars can be recognized by pulsar spin axis and/or proper motion. 4 of them agree with “O X O” modes sequence 7 of them are “X O X”, 3 of them are “X O”. Different OPM-pulsars may have different origin of OPM. Need more polarization and timing obs. to get PA and PM angle. 65m & FAST ???

年轻脉冲星星风云X-ray观测 部分PWN为环状结构 可以直接确定自转轴方向 Crab Vela PArot PArot 部分PWN为环状结构 可以直接确定自转轴方向 B0531+21 B0540-69 J1833-1034 J0205+6449 J2229+6114 B1509-58 J1124-5916 J1930+1852 Kargaltsev & Pavlov 2008 B0833-45 J2021+3651 B1706-44 B1800-21

Mode distinguishment for 3 young pulsars Both spin axis and well-calibrated polarization position angle curve is needed

普通脉冲星:spin-kick趋于一致 利用偏振曲线最陡处PA0代替spin,统计PA0v的分布 Wang et al. 2006 Johnston et al. 2005

讨论 利用自行与PA最陡处偏振位置角之差(PA0v)辨别模式的前提: 下一步工作:获得更大的PA0v样本。 Spin-kick趋于一致。是否可靠? 年老的脉冲星可能不一致 部分年轻或正常脉冲星也有可能不一致。 传播效应对PA曲线垂直方向影响不大。基本可靠! 确定PA曲线最陡处的位置。对基本符合RVM描述的S型比较容易。但是对S曲线不完整的比较勉强! 下一步工作:获得更大的PA0v样本。 偏振观测与校准 多波段偏振观测 自行观测数据,长期timing或者VLBI观测获得。 下一步工作:正交模式的起源。正在进行中…

总结 利用年轻脉冲星星风云X-ray观测得到的自转轴方向可以辨别偏振模式,但是个数太少。 根据spin-kick的一致性,可以利用自行方位与PA最陡处偏振位置角之差(PA0v)来辨别偏振模式 PA0v ~ 0 o 为O-mode PA0v ~ 90 o为X-mode 应用: 利用PA0v辨别了12颗脉冲星的正交模式,发现 8颗脉冲星 X-mode位于leading side 4颗脉冲星 O-mode位于leading side 利用PA0v辨别了4颗conal-double PSRs 的偏振模式,有3颗是O-mode。 需要更多的校准好的偏振数据以及自行数据进行下一步统计研究。

Cheng & Ruderman 1979 curvature dominate Bunching dominate

星风云的详细结构

Vela 脉冲星星风云的结构 G. G. Pavlov et. al. ApJ. 591:1157 C. -Y. Ng ApJ Vela 脉冲星星风云的结构 G. G. Pavlov et. al. ApJ. 591:1157 C.-Y. Ng ApJ.601:479 (FITTING PWN TORI) Chandra ACIS-S3 image of Vela PWN:(1) Vela pulsar, (2) inner arc, (3) outer arc, (4) inner jet, (5) counter jet, (6) shell, (7) outer jet.

考虑spin-kick的一致性,可以用自行代替自转轴方向 判断自行方向角PAv与PA最陡处PA0的差值PA0v PA0v ~ 0 o => O-mode PA0v ~ 90 o => X-mode X-mode Two Vela-like PSRs X-mode PAv PAv X-mode

O-mode X-mode 应用PA0v辨别正交模式 B1929+10 B0736-40 PAv O-mode X-mode

B1237+25 B1857-26 X-mode O-mode X-mode O-mode PAv

PAv X-mode O-mode? O-mode X-mode X-mode B0835-41 B0450-18 X-mode

8颗脉冲星 X-mode位于leading side B0355+54 J1735-0724 X-mode X-mode O-mode PAv O-mode 8颗脉冲星 X-mode位于leading side

J0953+0755 J1453-6413 X-mode O-mode PAv O-mode O-mode X-mode

4颗脉冲星 O-mode位于leading side 8颗脉冲星 X-mode位于leading side J1645-0317 J1709-1640 PAv X-mode O-mode O-mode X-mode 4颗脉冲星 O-mode位于leading side 8颗脉冲星 X-mode位于leading side

Conal-Double PSRs 中PA与V的关系 Conal-double pulsars, PA increase  V < 0 PA decrease  V > 0 PAv Han et al. 1998, You et al. 2006 可以利用磁层中的波模耦合传播效应来很好的解释 波模耦合产生的圆偏振依赖于PA的变化趋势 要求:Conal-Double PSRs的偏振辐射都是O-mode! 可以用PA0v来检验是否为O-mode

4颗conal-double PSRs有PA0v 3 颗为 O-mode, 1颗为 X-mode