第五章 时序逻辑电路 陶文海. 第五章 时序逻辑电路 陶文海 5.1 概述 时序逻辑电路由组合电路和存储电路两部分构成。 5.1 概述 时序逻辑电路由组合电路和存储电路两部分构成。 按触发脉冲输入方式的不同, 时序电路可分为同步时序电路和异步时序电路。同步时序电路是指各触发器状态的变化受同一个时钟脉冲控制;而在异步时序电路中,各触发器状态的变化不受同一个时钟脉冲控制。

Slides:



Advertisements
Similar presentations
实验 D 触发器及 JK 触发器 一、实验目的实验目的 二、实验仪器设备实验仪器设备 三、实验原理实验原理 四、实验电路实验电路 五、实验内容及步骤实验内容及步骤 六、实验注意事项实验注意事项 七、实验报告要求.
Advertisements

第11章 触发器及时序逻辑电路 龚淑秋 制作.
项目七、计数器应用实训 主讲教师:王通明 副教授.
数字逻辑设计实验 2011 春季学期.
第六章 采用中、大规模集成电路 的逻辑设计.
第四章 时序逻辑电路 返回 4.1 概 述 4.2 时序逻辑电路的结构及类型 4.3 状态表和状态图 4.4 时序逻辑电路的分析与设计
实验四 利用中规模芯片设计时序电路(二).
第五章 触发器 5.1 概述(掌握触发器基本概念) 5.2 SR锁存器(掌握基本结构及动作特点)
5.4 顺序脉冲发生器、 三态逻辑和微机总线接口 顺序脉冲发生器 顺序脉冲 计数型 分类 移位型.
——环形脉冲分配器与循环彩灯控制器的制作
第七讲 数字集成电路及应用 集成编码器 编码器的逻辑功能是将加在电路若干个输入端中的某一个输入端的信号变换成相应的一组二进制代码输出。常用的编码器集成电路有8/3线优先编码器和10/4线优先编码器等器件。 图4.5.1(a)是8/3线优先编码器74LS148的管脚排列图。I0~I7是输入信号输入端,输入8个信号,低电平有效。C、B、A为三输出端,可组成8组二进制码输出,且为反码输出。在I0~I7输入端中,优先权排列顺序为I7(最高)……I0(最低)。74LS148编码器的真值表如表4-1所示。
第6章 时序逻辑电路 《数字电子技术基础》 时序逻辑电路的基本概念 时序逻辑电路的基本分析方法和分析步骤。
第21章 触发器和时序逻辑电路 21.1 双稳态触发器 21.2 寄存器 21.3 计数器 定时器及其应用
第五章 常用时序集成电路及其应用 第一节 时序集成模块的国标符号 第二节 计数器 第三节 寄存器 第四节 序列码发生器
时序逻辑电路 -触发器.
时序电路 计数器分析及设计 刘鹏 浙江大学信息与电子工程学院 April 10, 2018 EE141
第四章 同步时序逻辑电路.
时序电路 计数器分析及设计 刘鹏 浙江大学信息与电子工程学院 March 31, 2016 EE141
实验八 同步计数器及其应用.
时序逻辑电路 -分析.
第五章 常用时序集成电路及其应用 第一节 计数器 第二节 寄存器 第三节 序列码发生器 第四节 时序模块的应用 小结.
第4章 第4章 触发器和时序逻辑电路 4.1 触发器 4.2 时序逻辑电路 *4.3 应用举例 上页 下页 返回.
第7章 常用集成时序逻辑器件及应用 7.1 集成计数器 7.2 集成寄存器和移位寄存器 7.3 序列信号发生器
 与非门参数测试与组合逻辑电路设计  集成触发器  计数、译码、显示电路
 与非门参数测试与组合逻辑电路设计  集成触发器  计数、译码、显示电路
概述 一、基本要求 1. 有两个稳定的状态(0、1),以表示存储内容; 2. 能够接收、保存和输出信号。 二、现态和次态
第10章 触发器和时序逻辑电路 10.1 触发器 10.2 计数器 10.3 寄存器 定时器.
时序逻辑电路实验 一、 实验目的 1.熟悉集成计数器的功能和使用方法; 2.利用集成计数器设计任意进制计数器。 二、实验原理
实验七 电子秒表-1.
实验七 计数器及其应用 一.实验目的 1.掌握中规模集成计数器的使用方法和功能测试方法 2. 运用集成计数器构成任意模值计数器
第四章 时序逻辑电路 学习要点: 触发器的逻辑功能及使用 时序电路的分析方法和设计方法 计数器、寄存器等中规模集成电路的逻辑功能和使用方法
14.2 时序逻辑电路的分析 概述 时序逻辑电路是由存储电路和组合逻辑电路共同组成的,它的输出状态不仅与输入有关,还与电路的过去状态有关,即具有存储功能。 输入信号 输出信号 输出方程 驱动方程 描述时序逻辑电路的三个方程 状态方程 存储电路的输入信号 时序逻辑电路构成框图 存储电路的输出信号.
第21章 触发器和时序逻辑电路 21.1 双稳态触发器 21.2 寄存器 21.3 计数器 21.4△ 时序逻辑电路的分析
数字电路实验 实验六 触发器的应用 主讲教师:周婷.
第四章 MCS-51定时器/计数器 一、定时器结构 1.定时器结构框图
数字电子技术 Digital Electronics Technology
时序逻辑电路 -分析.
第 6 章 时序电路的分析与设计 6.1 时序电路概述 6.2 同步时序逻辑电路的分析 6.3 异步时序电路的分析方法
第四章 时序逻辑电路 触发器 时序电路概述 同步时序电路的分析 同步时序电路的设计 异步时序电路 小结.
(Random Access Memory)
第四章 触发器 4.1 概 述 4.2 触发器的电路结构与动作特点 4.3 触发器的逻辑功能及其描述方法 4.4 触发器逻辑功能的转换.
组合逻辑电路 ——中规模组合逻辑集成电路.
中等职业学校教学用书(电子技术专业) 《电工与电子技术基础》 任课教师:李凤琴 李鹏.
第五章 触发器 5.1 基本触发器 一、基本RS触发器 1.用与非门组成的基本RS触发器
实验三 16位算术逻辑运算实验 不带进位控制的算术运算 置AR=1: 设置开关CN 1 不带进位 0 带进位运算;
第 13 章 触发器和时序逻辑电路 13.1 双稳态触发器 13.2 寄存器 13.3 计数器 定时器及其应用.
实验六 基本RS和D触发器的应用.
实验六 触发器逻辑功能测试 一、实验目的 二、实验仪器 1、熟悉并掌握RS、D、JK触发器的构成、工作原理和 功能测试方法。
长春理工大学 电工电子实验教学中心 数字电路实验 数字电路实验室.
实验二 带进位控制8位算术逻辑运算实验 带进位控制8位算术逻辑运算: ① 带进位运算 ② 保存运算后产生进位
第18章 集成触发器 18.1 RS触发器 18.2 几种常见的触发器.
MAX——PLUSⅡ 图形化程序设计 ——数字电子钟的设计 (二十四小时六十分钟六十秒)
《数字电子技术基础》(第五版)教学课件 清华大学 阎石 王红
概 述 一、时序电路的特点 x1 y1 1. 逻辑功能特点 xi yj 任何时刻电路的 输出,不仅和该时刻 的输入信号有关,而
集成与非门在脉冲电路中的应用 实验目的 1. 了解集成与非门在脉冲电路中 的某些应用及其原理。 2. 学习用示波器观测波形参数与
实验十 电子秒表.
HSC高速输出例程 HORNER APG.
实验五 数据选择和译码显示 -1.
第4章 触发器.
数字电路实验 实验七 计数器功能测试及应用 主讲教师:周婷.
4.4 计数器 4.4.1 同步二进制计数器 4.4.2 同步十进制计数器 4.4.3 异步计数器 2019/5/16.
概述 一、基本要求 1. 有两个稳定的状态(0、1),以表示存储内容; 2. 能够接收、保存和输出信号。 二、现态和次态
现代电子技术实验 同步计数器及其应用研究 实验目的 实验原理 实验内容 注意事项.
信号发生电路 -非正弦波发生电路.
电子技术基础.
电工电子技术实验 电工电子教学部.
第12章 555定时器及其应用 一. 555定时器的结构及工作原理 1. 分压器:由三个等值电阻构成
第十章 常用时序逻辑电路及其应用 10.1 寄存器 寄存器是数字系统常用的逻辑部件,它用来存放数码或指令等。它由触发器和门电路组成。一个触发器只能存放一位二进制数,存放 n 位二进制时,要 n个触发器。 按功能分 数码寄存器 移位寄存器.
第九章 存储器和可编程逻辑器件 本章主要内容 半导体存储器 只读存储器 随机存取存储器 存储器容量的扩展 可编程逻辑器件
数字电子技术基础 信息科学与工程学院·基础电子教研室.
Presentation transcript:

第五章 时序逻辑电路 陶文海

5.1 概述 时序逻辑电路由组合电路和存储电路两部分构成。 5.1 概述 时序逻辑电路由组合电路和存储电路两部分构成。 按触发脉冲输入方式的不同, 时序电路可分为同步时序电路和异步时序电路。同步时序电路是指各触发器状态的变化受同一个时钟脉冲控制;而在异步时序电路中,各触发器状态的变化不受同一个时钟脉冲控制。

5.1.1 时序电路的分析方法 分析步骤: 写相关方程式——时钟方程、驱动方程和输出方程。 求各个触发器的状态方程。 5.1.1 时序电路的分析方法 分析步骤: 写相关方程式——时钟方程、驱动方程和输出方程。 求各个触发器的状态方程。 求出对应状态值——列状态表、画状态图和时序图。 归纳上述分析结果, 确定时序电路的功能。

例 1 分析如图所示的时序电路的逻辑功能。

5.2 同 步 计 数 器 计数器是用来实现累计电路输入CP脉冲个数功能的时序电路。 在计数功能的基础上,计数器还可以实现计时、定时、分频和自动控制等功能,应用十分广泛。 计数器按照CP脉冲的输入方式可分为同步计数器和异步计数器。 计数器按照计数规律可分为加法计数器、 减法计数器和可逆计数器。 计数器按照计数的进制可分为二进制计数器(N=2n)和非二进制计数器(N≠2n),其中, N代表计数器的进制数,n代表计数器中触发器的个数。

5.2.1 同步计数器 1. 同步二进制计数器

2. 同步二进制计数器的连接规律和特点 连接规律: 所有CP接在一起,上升沿或下降沿均可。 加法计数 J0=K0=1 Ji=Ki= n-1≥i≥1 减法计数 Ji=Ki=  n-1≥i≥1

3. 同步非二进制计数器 例 2分析如图所示同步非二进制计数器的逻 辑功能。

5.3 异 步 计 数 器 异步二进制计数器 异步三位二进制计数器电路

2. 异步二进制计数器的规律和特点 连接规律: (1)各触发器接成计数状态 JK触发器: Ji=Ki=1 T触发器: Ti=1 D触发器: D=Qi (2)CP的连接方法: CP0=CP 加法计数 : 下降沿触发 CPi=Qi-1 (i≥1) 上升沿触发 CPi=Qi-1 (i≥1) 减法计数:

5.4 集成计数器 1. 集成同步计数器74LS161 74LS161管脚排列图

74LS161逻辑功能表 CR LD CTP CTT CP Q3 Q2 Q1 Q0 ╳ 1 ↑ D3 D2 D1 D0 计 数

当复位端CR=0时,输出Q3Q2Q1Q0全为零,实现异步清零功能(又称复位功能)。 当LD=1时,预置控制端=0,并且 CP=CP↑时,Q3Q2Q1Q0= D3D2D1D0,实现同步预置数功能。 当CR=LD=1且CTP·CTT=0时,输出Q3Q2Q1Q0保持不变。 当CR=LD=CTP=CTT=1,CP=CP↑时,实现计数功能。

集成异步计数器74LS290 集成计数器74LS290逻辑电路图

74LS290逻辑功能表 1 ╳ CP 二进制 五进制 8421十进制 5421十进制

S9(1)、S9(2)称为置“9”端,R0(1)、R0(2)称为置“0”端;CP0、 CP1端为计数时钟输入端,Q3Q2Q1Q0为输出端, NC表示空脚。 置“9”功能:当S9 (1)=S9(2)=1时,不论其他输入端状态如何,计数器输出Q3Q2Q1Q0= 1001,而(1001)2=(9)10,故又称异步置数功能。 置“0”功能: 当S9(1)和S9(2)不全为1,并且R0(1)=R0(2)=1时, 不论其他输入端状态如何, 计数器输出Q3Q2Q1Q0 = 0000,故又称异步清零功能或复位功能。 计数功能:当S9(1)和S9(2)不全为1,并且R0(1)和R0(2)不全为1,输入计数脉冲CP时, 计数器开始计数。

5.4.2用集成计数器构成任意进制计数器 用现有的M进制集成计数器构成N进制计数器时,如果M>N,则只需一片M进制计数器;如果M<N,则要用多片M进制计数器。 1)反馈清零法 2) 反馈置数法 3) 级联法

反馈清零法 反馈清零法是利用芯片的复位端和门电路,跳越M-N个状态,从而获得N进制计数器的。 例一、用74LS161构成十进制计数器。

(a)构成电路 (b) 计数过程(即状态图) 反馈清零法构成十进制计数器 (a)构成电路 (b) 计数过程(即状态图) 因为是异步清零端,虽然用1010清零,但是1010的状态持续时间很短,可认为不出现,所以十进制的状态应从0000——1001。

例二、用74LS290构成六进制计数器。(用反馈清零法) CP1和Q0相接构成十进制计数器,然后利用异步清零端R0(1)和R0(2)反馈清零。 R0(1)和R0(2)是异步清零端,故虽然用0110清零,但0110不出现,所以六进制的状态应从0000——0101。

反馈置数法 反馈置数法适用于具有预置数功能的集成计数器。对于具有同步预置数功能的计数器而言,在其计数过程中,可以将它输出的任何一个状态通过译码,产生一个预置数控制信号反馈至预置数控制端,在下一个CP脉冲作用后,计数器就会把预置数输入端的状态置入输出端。预置数控制信号消失后,计数器就从被置入的状态开始重新计数。还有一种方法是计数到1111状态时产生的进位信号译码后,反馈到预置数控制端实现反馈置数。

例三、用74LS161构成七进制计数器。(用反馈置数法) 预置数法构成七进制计数器(同步预置) (a) 构成电路; (b) 计数过程(即状态图) 因为 是同步置数端,所以用0110反馈清零时,0110状态可以正常出现,即七进制的状态应该从0000——0110。

例四、利用进位端反馈置数法,用74LS161构成九进制计数器。 预置数法构成九进制计数器(同步预置) (a) 构成电路; (b) 计数过程(即状态图)

级 联 法 适用于M<N,需要多片集成块,方法是:先将n片计数器级联组成最大计数值N>M的计数器,然后采用整体清 0 或整体置数的方法实现模M计数器。 例五、用74LS161构成二十四进制计数器。 先将两片74LS161构成二百五十六进制计数器,然后用二十四(00011000)整体清零即可构成二十四进制计数器,二十四进制的状态从00000000——00010111。

用74LS161芯片构成二十四进制计数器

例六、将74LS290构成十进制以内任意计数器。 二进制计数器: CP由CP0端输入,Q0端输出,如图(a)所示。 五进制计数器:CP由CP1端输入,Q3Q2Q1端输出,如图(b)所示。 十进制计数器(8421码):Q0和CP1相连,以CP0为计数脉冲输入端,Q3Q2Q1Q0端输出,如图(c)所示。 十进制计数器(5421码):Q3和CP0相连,以CP1为计数脉冲输入端,Q0Q3Q2Q1端输出,如图(d)所示。

74LS290构成二进制、五进制和十进制计数器

例五、用74LS290构成二十四进制计数器。 先将两片74LS290构成一百进制计数器,然后用二十四(0010 0100)整体清零构成二十四进制计数器,二十四 进制的状态从0000 0000——0010 0011(23)。 用74LS290芯片构成二十四进制计数器

5.5 寄存器 5.5.1数据寄存器 数据寄存器又称数据缓冲储存器或数据锁存器,其功能是接受、存储和输出数据,主要由触发器和控制门组成。n个触发器可以储存n位二进制数据。数据寄存器按其接受数据的方式又分为双拍式和单拍式两种。

1. 双拍式数据寄存器 双拍式三位数据寄存器

2. 单拍式数据寄存器 单拍式四位二进制数据寄存器

5.5.2 移位寄存器 移位寄存器除了接受、存储、输出数据以外,同时还能将其中寄存的数据按一定方向进行移动。移位寄存器有单向和双向移位寄存器之分。 1. 单向移位寄存器 单向移位寄存器只能将寄存的数据在相邻位之间单方向移动。按移动方向分为左移移位寄存器和右移移位寄存器两种类型。

右移移位寄存器电路

2. 双向移位寄存器 X是工作方式控制端。当X=0时,实现数据右移寄存功能;当 X = 1时,实现数据左移寄存功能;DSL是左移串行输入端,而DSR是右移串行输入端。

3. 移位寄存器的应用 在数字电路中,数据的传送方式有串行和并行两种,而移位寄存器可实现数据传送方式的转换。 2) 构成移位型计数器 1) 实现数据传输方式的转换 在数字电路中,数据的传送方式有串行和并行两种,而移位寄存器可实现数据传送方式的转换。 2) 构成移位型计数器

环形计数器 环形计数器是将单向移位寄存器的串行输入端和串行输出端相连,构成一个闭合的环,如图5.24(a)所示。 实现环形计数器时,必须设置适当的初态,且输出Q3Q2Q1Q0端初始状态不能完全一致(即不能全为“1”或“0”),这样电路才能实现计数, 环形计数器的进制数N与移位寄存器内的触发器个数n相等,即N=n,状态变化如图5.28(b)所示(电路中初态为0100)。

图5.24环形计数器 (a) 逻辑电路图; (b) 状态图

扭环形计数器 图5.25 扭环形计数器 (a) 逻辑电路图 (b) 状态图

4. 集成移位寄存器 74LS194管脚排列图

74LS194的功能表 S1 S0 功 能 ╳ 清 零 1 保 持 右 移 左 移 并行输入 利用74LS194实现串-并行转换