Chapter 7 Metabolism of Amino Acids

Slides:



Advertisements
Similar presentations
第十章 氨基酸代谢 第一节 蛋白质的酶促降解 第二节 氨基酸的降解 第三节 氨基酸的生物合成 第四节 氨基酸衍生的其它含氮化合物.
Advertisements

第 26 章 氨基酸的分解代谢.
一、 氮平衡 nitrogen balance 是测定摄入氮量和排出氮量来了解蛋白质在体内 代谢和利用 的一种方法。 “ Nitrogen balance refers to the difference between total nitrogen intake and total nitrogen.
一、氨基酸代谢概况食物蛋白质 氨基酸特殊途径  - 酮酸 糖及其代谢 中间产物 脂肪及其代谢 中间产物 TCA 鸟氨酸 循环 NH 4 + NH 3 CO 2 H2OH2OH2OH2O 体蛋白 尿素 尿酸 激素 卟啉 尼克酰氨 衍生物 肌酸胺 嘧啶 嘌呤 生物固氮 硝酸还原 (次生物质代谢) CO.
第 七 章 氨 基 酸 代 谢 Metabolism of Amino Acids. 思考题: 1 、简述真核细胞内蛋白质降解的途径。 2 、体内氨基酸脱氨基有哪些方式?各有何特点? 3 、简述 α- 酮酸的代谢去路。 4 、丙氨酸-葡萄糖循环的过程和有何生理意义? 5 、试述尿素生成的过程、部位及调节。
蛋白质降解及氨基酸代谢 Proteins Degradation& Amino acids Metabolism 宋潇达
第七章 氨基酸代谢. NH 2 -CH 2 -COOH + ½ O 2  H-CO-COOH + NH 2 第一节 Amino acid degradation 1. 氧化脱氨基 氨基酸在酶的作用下脱去氨基生成相应酮酸的过 程,叫氧化脱氨基作用 甘氨酸氧化酶 一. 氨的去路.
一、蛋白质通论 蛋白质存在于所有的生物细胞中,是构成生物体最基本的结构物质和功能物质。
教学目的与要求: 1.了解生命体中的化学元素的作用; 2.了解生命体中的重要有机化合物。
第十一章 蛋白质的分解代谢 (protein catabolism)
第六章 维生素和辅酶 一 维生素B1与羧化辅酶 二 维生素B2与黄素辅酶 三 泛酸和辅酶A 四 维生素PP和辅酶Ⅰ、辅酶Ⅱ
第八章 氨基酸代谢 王丽影.
Amino Acid Metabolism 生化教研室:牛永东.
第十章 蛋白质降解与氨基酸代谢 (1)蛋白质的降解: 外源蛋白的消化 内源性蛋白的选择性降解 (2)氨基酸的分解代谢:
第 九 章氨基酸代谢的代 谢 Metabolism of Amino Acids
第 七 章 蛋白质的分解代谢 catabolism of protein.
 蛋白质化学.
葡萄糖 合成 肌糖元 第六节 人和动物体内三大营养物质的代谢 一、糖类代谢 1、来源:主要是淀粉,另有少量蔗糖、乳糖等。
人和动物体内三大营养物质的代谢 制作:王殿凯.
Amino Acids and their Derivatives Biosynthesis
第30章 蛋白质的降解和氨基酸的分解代谢.
一、甘油的氧化 脂肪动员产生的甘油主要在肝细胞经甘油激酶作用生成3-磷酸甘油,再脱氢生成磷酸二羟丙酮后循糖代谢途径分解或经糖异生途径转化成葡萄糖。脂肪细胞及骨骼肌等组织因甘油激酶活性很低,不能很好利用甘油。 二、脂肪酸的氧化分解 (一)脂肪酸的活化 在胞液中FFA通过与CoA酯化被激活,催化该反应的酶是脂酰CoA合成酶,需ATP、Mg2+参与。反应产生的PPi立即被焦磷酸酶水解,阻止了逆反应,所以1分子FFA的活化实际上消耗2个高能磷酸键。
第十五章 细胞代谢调控 物质代谢途径的相互联系 代谢的调节.
氨基酸代谢 Amino Acid Metabolism 蛋白质的营养作用 蛋白质的消化吸收 氨基酸的分解代谢.
第30章 蛋白质的降解 及氨基酸的分解代谢.
& Amino Acid Catabolism
第三节 氨基酸的一般代谢 一、氨基酸的来源与去路 (一)氨基酸的来源 1.食物蛋白质经消化被吸收的氨基酸 2.体内组织蛋白质的降解产生氨基酸
(Metabolisim of Protein)
第七节 维生素与辅因子.
第八章 含氮小分子代谢 一、蛋白质的降解与氨基酸代谢 二、核酸的降解与核苷酸代谢.
第十章 氨基酸的代谢.
第九章 蛋白质的酶促降解和氨基酸代谢.
第一章 蛋白质的结构与功能 Structure and Function of Protein.
第二十三章 蛋白质的酶促降解及氨基酸代谢.
第31章 氨基酸的生物合成.
第十章 蛋白质降解与氨基酸代谢 蛋白质是细胞的首要结构物质,又是酶的基本组成成分。生物体的一切生命现象,无不与蛋白质的活动密切相关。蛋白质的新陈代谢是生物体生长、发育、繁殖和一切生命活动的基础。 在微生物和高等植物细胞中和动物细胞一样,经常存在一个很小的游离氨基酸“库”,这些氨基酸主要用于蛋白质的合成和构成无数重要的其他含氮物质,而较少用于降解。细胞中经常可以同时供应20种氨基酸以合成蛋白质。
第31章 氨基酸及其重要衍生物的生物合成.
氨基酸代谢 Metabolism of Amino Acids
第六章 蛋白质降解与氨基酸代谢 第一节 蛋白质的消化降解 第二节 氨基酸的分解代谢 第三节 氨基酸衍生物 第四节 氨基酸的合成代谢.
生物技术一班 游琼英
The biochemistry and molecular biology department of CMU
第十章 蛋白质的酶促降解及氨基酸代谢 第一节 蛋白质的酶促降解 第二节 氨基酸的分解 第三节 氨基酸分解产物的转化
覃秀桃 山西医科大学 基础医学院 生物化学与分子生物学教研室
第七章 蛋白质的酶促降解和氨基酸代谢.
第二篇 发酵机制 发酵机制:微生物通过其代谢活动,利用基质(底物)合成人们所需要的代谢产物的内在规律 积累的产物 微生物菌体 酶 厌气发酵:
第十一章 含氮化合物代谢.
第七章 氨基酸代谢 Metabolism of Amino Acids 主讲教师:王爱红 延大医学院生物化学教研室.
第 八 章 蛋白质的分解代谢.
第 九 章 蛋白质降解及氨基酸代谢.
第九章 蛋白质代谢 返回目录.
第七章 蛋白质分解和氨基酸代谢.
氨 基 酸 代 谢 Metabolism of Amino Acids
30 蛋白质降解和 氨基酸的分解代谢.
氨 基 酸 代 谢 Metabolism of Amino Acids
第 七 章 氨 基 酸 代 谢.
6.1概述 6.1.1氨基酸基本的理化性质 一、基本物理学性质
第八章 核苷酸代谢.
第十一章 氨基酸代谢 Metabolism of Amino Acids
Metabolic Interrelationships
Chap 9 蛋白质的酶促降解和氨基酸代谢 1 蛋白质的酶促降解 氨基酸的分解代谢 氨基酸的合成代谢.
第三章蛋白质化学.
第23章 糖异生和其他代谢路径 由非糖物质转变为葡萄糖或糖原的过程称为糖异生(gluconeogenesis)。
第11章 蛋白质的分解代谢 主讲教师:刘琳.
Interrelationships & Regulations of Metabolism
第四节 个别氨基酸的代谢 氨基酸的脱羧基作用 一碳单位 含硫氨基酸 芳香族氨基酸及 链氨基酸的代谢.
第九章 核苷酸的代谢 Nucleotide Metabolism
氨 基 酸 代 谢 Metabolism of Amino Acids
第九章 物质代谢的联系与调节 Interrelationships & Regulations of Metabolism
生物化学.
四、胞液中NADH的氧化 1. -磷酸甘油穿梭作用: 存在脑和骨骼中.
Presentation transcript:

Chapter 7 Metabolism of Amino Acids 第八章 氨基酸代谢 Chapter 7 Metabolism of Amino Acids

第一节 蛋白质的酶促降解 人体内蛋白质处于不断降解与合成的动态平衡中。 成人每天约有1%—2%的体内蛋白质被降解。

蛋白质的最低生理需要量 在糖和脂肪等物质充分供应的条件下,为维持氮的总平衡,至少必需摄入的蛋白质的量,称为蛋白质的最低生理需要量。 成人每日最低蛋白质需要量为30—50g 我国营养学会推荐成人每日蛋白质需要量为80g。

一、体内蛋白质的降解 (一)真核细胞中存在两条不同的降解途径: 1. 不依赖ATP的降解途径: 在溶酶体内进行,主要降解外源性蛋白质、膜蛋白和长寿命的胞内蛋白质。

2. 依赖ATP和泛素的降解途径: 在胞液中进行,主要降解异常蛋白质和短寿命的蛋白质。需ATP和泛素参与 泛素(ubiquitin)是一种小分子蛋白质,普遍存在于真核细胞中。

(二)蛋白质水解酶 (三)蛋白质酶促降解 (1)内肽酶(蛋白酶,肽链内切酶) 形成各种短肽 羧肽酶 氨肽酶 二肽酶 (2)端肽酶(肽酶) 早期合成的蛋白质在完成其功能之后不可避免地要分解,其分解产物将作为合成新性质蛋白质的原料。 需内肽酶、羧肽酶、氨肽酶和二肽酶的共同作用 蛋白质 多肽 AA 合成新蛋白质

二、氨基酸代谢库 食物蛋白经消化吸收的氨基酸(外源性氨基酸)与体内组织蛋白降解产生的氨基酸(内源性氨基酸)混在一起,分布于体内各处参与代谢,称为氨基酸代谢库(metabolic pool)。

氨基酸代谢概况 尿素 酮 体 氨 食物蛋白质 α-酮酸 氧化供能 氨基酸代谢库 组织 糖 蛋白质 胺 类 体内合成氨基酸 (非必需氨基酸) 脱氨基作用 酮 体 氧化供能 糖 胺 类 脱羧基作用 氨 尿素 代谢转变 其它含氮化合物 (嘌呤、嘧啶等) 合成 食物蛋白质 消化吸收 组织 蛋白质 分解 体内合成氨基酸 (非必需氨基酸) 氨基酸代谢库

氨基酸的分解代谢概况 特殊分解代谢→ 特殊侧链的分解代谢 一般分解代谢 CO2 胺 脱羧基作用→ 脱氨基作用→ NH3 -酮酸

第二节 氨基酸的分解与转化 一、脱氨基作用 氨基酸失去氨基的作用叫脱氨基作用 氨基酸主要通过五种方式脱氨基 氧化脱氨基 非氧化脱氨基 第二节 氨基酸的分解与转化 一、脱氨基作用 氨基酸失去氨基的作用叫脱氨基作用 氨基酸主要通过五种方式脱氨基 氧化脱氨基 非氧化脱氨基 脱酰胺作用 转氨基作用 联合脱氨基

㈠ 氧化脱氨基作用 定义:-AA在酶的作用下,氧化生成-酮酸,同时消耗氧并产生氨的过程。 ㈠ 氧化脱氨基作用 定义:-AA在酶的作用下,氧化生成-酮酸,同时消耗氧并产生氨的过程。 氧化脱氨基的反应过程包括脱氢和水解两步,脱氢反应需酶催化,而水解反应则不需酶的催化。 R-CH-COOH NH2 2H R-C-COOH + NH3 O H2O R-C-COOH NH 酶

L-AA氧化酶:催化L-AA氧化脱氨,体内分布不广泛,最适pH10左右,以FAD或FMN为辅基。 D-AA氧化酶:体内分布广泛,以FAD为辅基。但体内D-AA不多。 L-谷氨酸脱氢酶:专一性强,分布广泛(动、植、微生物),活力强,以NAD+或NADP+为辅酶。 +NAD(P)H+NH3 CH2 - COOH CHNH2 +NAD(P)++H2O 谷氨酸 脱氢酶 ATP GTP NADH变构抑制 ADP GDP变构激活 C=O 脱氢酶: 体内(正) 体外(反)

㈡ 非氧化脱氨 还原脱氨基、脱水脱氨基、水解脱氨基、脱硫氢基脱氨基等。 (在微生物中个别AA进行,但不普遍) ㈡ 非氧化脱氨 还原脱氨基、脱水脱氨基、水解脱氨基、脱硫氢基脱氨基等。 (在微生物中个别AA进行,但不普遍) 例:脱水脱氨基(只适于含一个羟基的AA) L-丝氨酸 CH2 COO- C-NH3+ = - CH3 C=NH2+ COOH CH2OH NH2-C-H C=O 丝氨酸脱水酶 +NH3 丙酮酸 -H2O +H2O α-氨基丙烯酸 亚氨基丙酸

㈢ 氨基酸的脱酰胺作用 上述两种酶广泛存在于微生物、动物、植物中,有相当高的专一性。 CH2 - CONH2 CHNH3+ COO- ㈢ 氨基酸的脱酰胺作用 CH2 - CONH2 CHNH3+ COO- +H2O +NH3 谷氨酰胺酶 天冬酰胺酶 上述两种酶广泛存在于微生物、动物、植物中,有相当高的专一性。

(四)转氨基作用 指α-AA和酮酸之间氨基的转移作用, α-AA的α-氨基借助转氨酶的催化作用转移到酮酸的酮基上,结果原来的AA生成相应的酮酸,而原来的酮酸则形成相应的氨基酸。 R’-CH-COOH R”-C-COOH NH2 O R’-C-COOH R”-CH-COOH O NH2 转氨酶

转氨基作用(transamination)可以在各种氨基酸与-酮酸之间普遍进行。除Lys,Pro外,均可参加转氨基作用。 各种转氨酶(transaminase)均以磷酸吡哆醛(胺)为辅酶。 迄今发现的转氨酶都以磷酸吡哆醛(PLP)为辅基,它与酶蛋白以牢固的共价键形式结合。

(五) 联合脱氨基(动物组织主要采取的方式) (五) 联合脱氨基(动物组织主要采取的方式) 由于转氨基作用不能最后脱掉氨基,氧化脱氨中只有谷氨酸脱氢酶活力高,转氨基作用与氧化脱氨基作用联合在一起才能迅速脱氨,这种作用就称为联合脱氨作用。 L-谷氨酸脱氢酶 NH3 + NADH + H+ H2O + NAD+ -酮戊二酸 谷氨酸 转氨酶 氨基酸 -酮酸

二、脱羧基作用 脱羧基作用(decarboxylation) 氨基酸脱羧酶 氨基酸 胺类 RCH2NH2 + CO2 磷酸吡哆醛 由氨基酸脱羧酶(decarboxyase)催化,辅酶为磷酸吡哆醛,产物为CO2和胺。所产生的胺可由胺氧化酶氧化为醛、酸,酸可由尿液排出,也可再氧化为CO2和水。

三、氨基酸的羟化作用 主要讲Tyr代谢与黑色素形成问题 Tyr酶 Tyr酶 多巴醌 多巴醌 多巴 多巴 聚合 激素 动物 黑色素 植物 多巴胺 生物碱

帕金森病(Parkinson disease)患者多巴胺生成减少。 在黑色素细胞中,酪氨酸可经酪氨酸酶等催化合成黑色素。 人体缺乏酪氨酸酶,黑色素合成障碍,皮肤、毛发等发白,称为白化病(albinism)。

四、氨基酸分解产物的代谢 (一)氨的去路 排氨生物:NH3转变成酰胺(Gln),运到排泄部位后再分解。(原生动物、线虫和鱼类) 重新利用合成AA: 合成酰胺(高等植物中) 嘧啶环的合成(核酸代谢)

(二)尿素的生成 体内氨的主要代谢去路是用于合成无毒的尿素(urea)。 合成尿素的主要器官是肝,但在肾及脑中也可少量合成。 尿素合成是经称为鸟氨酸循环(ornithine cycle)的反应过程来完成的。催化这些反应的酶存在于胞液和线粒体中。 游离NH3对植物有毒害作用,植物可以通过尿素循环,将游离NH3转变为尿素(也是储备N的主要形式)

= 1.尿素生成的鸟氨酸循环 (1)氨基甲酰磷酸的合成 此反应在线粒体中进行,由氨基甲酰磷酸合成酶Ⅰ(carbamoyl phosphate synthetase -Ⅰ , CPS-Ⅰ)催化,该酶需N-乙酰谷氨酸(AGA)作为变构激活剂,反应不可逆。 NH3 + CO2 H2O+ 2ATP 2ADP + Pi 氨基甲酰磷酸合成酶Ⅰ AGA,Mg2+ NH2 O ~ PO32- C O 氨基甲酰磷酸 =

(2) 瓜氨酸的合成 在线粒体内进行,由鸟氨酸氨基甲酰转移酶(ornithine carbamoyl trans-ferase, OCT)催化,将氨甲酰基转移到鸟氨酸的-氨基上,生成瓜氨酸。 NH2 O ~ PO32- C O (CH2)3 H2N- CH COOH NH + H3PO4 + 氨基甲酰磷酸 鸟氨酸 瓜氨酸 鸟氨酸氨基 甲酰转移酶 =

(3) 精氨酸代琥珀酸的合成 转运至胞液的瓜氨酸在精氨酸代琥珀酸合成酶(argininosuccinate synthetase)催化下,消耗能量合成精氨酸代琥珀酸。 限速酶 C O (CH2)3 NH H2N- CH COOH NH2 精氨酸代琥珀 酸合成酶 ATP AMP + PPi + H2O CH2 - CH H2N N + 瓜氨酸 天冬氨酸 精氨酸代琥珀酸

(4)精氨酸代琥珀酸的裂解 在胞液中由精氨酸代琥珀酸裂解酶(arginino-succinate lyase)催化,将精氨酸代琥珀酸裂解生成精氨酸和延胡索酸。  CH2 - CH COOH C N (CH2)3 NH H2N- CH NH2 精氨酸代琥珀酸 CH COOH + C NH (CH2)3 H2N- NH2 精氨酸 延胡索酸 精氨酸代琥 珀酸裂解酶

(5)精氨酸的水解 在胞液中由精氨酸酶催化,精氨酸水解生成尿素(urea)和鸟氨酸(ornithine)。鸟氨酸可再转运入线粒体继续进行循环反应。 (CH2)3 NH2 H2N- CH COOH C NH 精氨酸 - NH2 H2N - O + 鸟氨酸 尿素 精氨酸酶 H2O

鸟氨酸循环 线粒体 尿素 胞 液 CO2 + NH3 + H2O 氨甲酰磷酸 Pi 瓜氨酸 瓜氨酸 氨基酸 α-酮戊 二酸 精氨酸代 琥珀酸 2ADP+Pi CO2 + NH3 + H2O 氨甲酰磷酸 2ATP N-乙酰谷氨酸 鸟氨酸循环 线粒体 Pi 鸟氨酸 瓜氨酸 精氨酸代 琥珀酸 瓜氨酸 天冬氨酸 ATP AMP + PPi 氨基酸 草酰乙酸 苹果酸 α-酮戊 二酸 谷氨酸 α-酮酸 鸟氨酸 尿素 精氨酸 延胡索酸 胞 液

尿素合成的特点 1.合成主要在肝细胞的线粒体和胞液中进行; 2.合成一分子尿素需消耗4分子ATP; 3.精氨酸代琥珀酸合成酶是尿素合成的限速酶; 4.尿素分子中的两个氮原子,一个来源于NH3,一个来源于天冬氨酸。

(三)AA碳骨架的去路(AA脱氨基的意义) AA分解产生5种产物进入TCA循环,进行彻底的氧化分解。 五种产物为:乙酰CoA、 -酮戊二酸、琥珀酰CoA、延胡索酸、草酰乙酸 再合成AA

转变成糖和脂肪 生糖AA:凡能生成丙酮酸、琥珀酸、草酰乙酸和-酮戊二酸的AA。 (Ala Thr Gly Ser Cys Asp Asn Arg His Gln Pro Ile Met Val) 凡能生成乙酰CoA和乙酰乙酰CoA的AA均能通过乙酰CoA转变成脂肪。 转变成酮体 生酮AA:凡能生成乙酰乙酸、-丁酸的AA(Phe Tyr Leu Lys Trp,在动物肝脏中)

第三节 氨的同化及氨基酸的生物合成 氨同化 氨基酸的合成

一、氨的同化 定义:生物体将无机态的氨转化为含氮有机化合物的过程(N素亦称生命元素) 生物体N的来源

生物固N机制的研究历史: 1862-1962:完整的细胞水平(分离固氮微生物) 1960-1966:无细胞水平(发现固N需要铁氧还蛋白等 作电子传递体,需要ATP等) 1966-目前:分子水平(固N 酶纯化,组分I为钼铁蛋白;组分II为铁蛋白,1992年测定其空间结构)

3. 硝酸还原生成(植物体中的N源) 氨同化的途径 谷AA的形成途径 氨甲酰磷酸形成途径 NO2- 硝酸还原酶 亚硝酸还原酶 NO3- NH3 AA 氨同化的途径 谷AA的形成途径 氨甲酰磷酸形成途径 Pr 其它含N化合物

㈠ 谷AA合成途径 1.谷AA脱氢酶(细菌) NH3 谷AA 其它AA CH2 - COOH C=O CHNH2 +NH3 +NADH +NAD+ +H2O α-酮戊二酸 (TCA循环产生的) 此反应要求有较高浓度的NH3,足以使光合磷酸化解偶联,所以它不可能是无机氨转为有机氮的主要途径 1.谷AA脱氢酶(细菌)

2.谷氨酰胺合成酶(高等植物的主要途径) 谷氨酰胺(贮存了氨)可做为NH3的供体将其转移 CH2 - COOH CHNH2 CONH2 +NH3 +ATP +ADP +Pi+H2O 谷氨酰胺(贮存了氨)可做为NH3的供体将其转移

CH2 - CONH2 CHNH2 COOH CH2 - COOH C=O CH2 - COOH CHNH2 +2H + 2 谷AA合酶

㈡ 氨甲酰磷酸合成途径(微生物和动物) 原料:NH3 CO2 ATP 1 氨甲酰激酶 O H2N- C -OPO3H2 + ADP = 利用体内代谢的氨 原料:NH3 CO2 ATP 1 氨甲酰激酶 氨甲酰磷酸 Mg2+ O H2N- C -OPO3H2 + ADP = NH3 + CO2 + ATP 2 氨甲酰磷酸合成酶 辅因子 NH3 + CO2 + 2ATP O H2N-C-OPO3H2 + 2ADP+Pi Mg2+ 在植物体中,氨甲酰磷酸中的氮来自谷氨酰胺的酰胺基,不是由氨来的。

二、氨基酸的合成 主要通过转氨基作用 AA-R1 α-酮酸R2 转氨酶 α-酮酸R1 AA-R2 许多氨基酸可以作为氨基的供体,其中最主要的是谷氨酸,其被称为氨基的“转换站”,先转变成Glu再合成其它AA。

氨基酸的合成 有C架( α-酮酸) 有AA提供氨基 1.一碳基团的定义 (最主要为谷AA,领头AA) 生物化学中将具一个碳原子的基团称为一碳单位或一碳基团。

2.种类 甲基 (methyl) -CH3 亚甲基 (methylene) -CH2- 次甲基 (methenyl) -CH= 甲酰基 (formyl) -CHO 亚氨甲基 (formimino) -CH=NH

3.四氢叶酸是一碳单位的载体 FH4的生成 F FH2 FH4 FH2还原酶 NADPH+H+ NADP+

4. FH4携带一碳单位的形式 (一碳单位通常是结合在FH4分子的N5、N10位上) N5—CH3—FH4 N5、N10—CH2—FH4 N10—CHO—FH4 N5—CH=NH—FH4

5.一碳单位的生理功能 作为合成嘌呤和嘧啶的原料 把氨基酸代谢和核酸代谢联系起来

㈠ 丙氨酸族氨基酸的合成 共同碳架:EMP中的丙酮酸 CH2 - COOH C=O CH2 - COOH CHNH2 COOH CH3 ㈠ 丙氨酸族氨基酸的合成 包括:丙(Ala)、缬(Val)、亮(Leu) 共同碳架:EMP中的丙酮酸 CH2 - COOH C=O CH2 - COOH CHNH2 COOH CH3 C=O - COOH 谷丙转氨酶 - CHNH2 + + (GPT) - CH3 - 丙酮酸 谷AA 丙AA α-酮戊二酸

丙氨酸族其它氨基酸的合成 缬氨酸 2丙酮酸 α-酮异戊酸 α-酮异己酸 亮氨酸 CH3 - CH3-CH CH3-CH - CH2 - 转氨基 CO2 2丙酮酸 α-酮异戊酸 缩合 转氨基 α-酮异己酸 亮氨酸 CH3 CH3 - CH3-CH CH3-CH - - CH2 - C=O - C=O - COO- - COOH α-酮异戊酸

㈡ 丝氨酸族氨基酸的合成 甘AA碳架:光呼吸乙醇酸途径中的乙醛酸 + C=O 包括:丝(Ser)、甘(Gly)、半胱(Cys) CH2 - ㈡ 丝氨酸族氨基酸的合成 包括:丝(Ser)、甘(Gly)、半胱(Cys) 甘AA碳架:光呼吸乙醇酸途径中的乙醛酸 CH2 - COOH CHNH2 CHO + CH2NH2 C=O α-酮戊二酸 甘AA 谷AA 乙醛酸

COOH CH2NH2 - CH2OH CHNH2 +NH3+CO2 +2H+ + 2e- 2 H2O 丝AA 甘AA

半胱氨酸的合成途径(植物或微生物中) 丝AA+乙酰-CoA O-乙酰丝AA+CoA O-乙酰丝AA+硫化物 半胱氨酸+乙酸 三种氨基酸的关系 转乙酰基酶 丝AA+乙酰-CoA O-乙酰丝AA+CoA O-乙酰丝AA+硫化物 半胱氨酸+乙酸 提供硫氢基团 三种氨基酸的关系 乙醛酸 甘AA 丝AA 半胱AA 3-磷酸甘油酸

㈢ 天冬氨酸族氨基酸的合成 共同碳架:TCA中的草酰乙酸 ㈢ 天冬氨酸族氨基酸的合成 包括:天冬AA(Asp)、天冬酰胺(Asn)、赖(Lys)、苏(Thr)、甲硫(Met)、异亮(Ile) 共同碳架:TCA中的草酰乙酸 CH2 - COO- CHNH2 CH2 - COO- C=O CH2 - COO- CHNH2 CH2 - COO- C=O 转氨 + + 天冬AA

天冬酰胺合酶 (植,细) 动物 Asp+NH3 + ATP Asn+H2O + AMP+PPi Asp+Gln+ATP Mg2+ Asp+NH3 + ATP Asn+H2O + AMP+PPi 动物 Mg2+ Asp+Gln+ATP Asn+Glu+AMP+PPi

天冬氨酸族其它氨基酸的合成 OH O= C-O-P=O CH2 - COOH CHNH2 OH - CH2 - CHNH2 - COOH ATP ADP OH - CH2 NADPH+H+ - CHNH2 天冬氨酸激酶 - COOH NADP+ 天冬氨酸激酶 CH2 - CHO CHNH2 COOH 天冬氨酸 天冬氨酰磷酸 L-高丝氨酸 β-天冬氨酸半醛 甲硫氨酸 α,ε-二氨基庚二酸 苏氨酸 CO2 异亮氨酸(4个C来自Asp,2个C来自丙酮酸) 赖氨酸

几种氨基酸的关系 草酰乙酸 赖氨酸 苏氨酸 甲硫氨酸 异亮氨酸 天冬酰胺 天冬氨酸 β-天冬氨酸半醛

㈣ 谷氨酸族氨基酸的合成 共同碳架:TCA中的α-酮戊二酸 α-酮戊二酸 Glu 为还原同化作用 谷AA +NH3 +ATP ㈣ 谷氨酸族氨基酸的合成 包括:谷AA(Glu)、谷氨酰胺(Gln)、脯(Pro)、羟脯(Hyp)、精(Arg) 共同碳架:TCA中的α-酮戊二酸 α-酮戊二酸 Glu 为还原同化作用 脱H酶 谷AA +NAD+ +H2O α-酮戊二酸 谷AA +NH3 +ATP 谷氨酰胺+ADP+Pi+H2O 合酶 +NH3 +NADH (动物和真菌,不普遍) Glu合酶 2谷AA(普遍) 谷氨酰胺+ α-酮戊二酸 NADPH+H+ NADP+

由谷AA 脯AA CH2 - COOH CHNH2 CH2 - COOH CHNH2 CHO H2C CH2 HC N CHCOOH (△’-二氢吡咯-5-羧酸) CH2 - COOH CHNH2 CH2 - COOH CHNH2 CHO NAD(P)H NAD(P)+ H2C CH2 HC N CHCOOH Mg2+ ATP ADP (谷AA) (谷氨酰半醛) NADH H NAD+ HO C CH2 H2C NH CHCOOH H2C CH2 NH CHCOOH 1/2O2 (羟脯AA) (脯AA)

几种氨基酸的关系 谷氨酰胺 α-酮戊二酸 谷AA 脯AA 羟脯AA 精AA 鸟AA 瓜AA

㈤ 组氨酸族和芳香族氨基酸的合成 包括:组AA(His)、色AA(Trp)、酪AA(Tyr)、苯丙AA(Phe) ㈤ 组氨酸族和芳香族氨基酸的合成 包括:组AA(His)、色AA(Trp)、酪AA(Tyr)、苯丙AA(Phe) 组AA族碳架:PPP中的磷酸核糖 芳香族AA碳架:4-磷酸-赤藓糖(PPP)和PEP(EMP) N 来自ATP CH2 HC C CH-NH2 COOH - CH 来自核糖 NH 来自谷氨酰胺的酰胺基 从谷氨酸经转氨作用而来

芳香族氨基酸的关系 色氨酸 PEP 4-磷酸赤藓糖 莽草酸 分支酸 预苯酸 酪氨酸 苯丙氨酸 若将莽草酸看作芳香族氨基酸合成的前体,因此芳香族氨基酸合成时相同的一段过程叫莽草酸途径