第33章 核酸的降解和核苷酸代谢.

Slides:



Advertisements
Similar presentations
第十四章 核酸类药物 第一节 核酸类物质的分离提取及其发酵生产 一、 RNA 与 DNA 的提取与制备 (一) RNA 的提取与制备 1. 工业用 RNA 的提取 ( 1 ) RNA 及其工业来源 通常在细菌中 RNA 占 5 % -25 %,在酵母中占 2.7 %~ 15 %, 在霉菌中占 0.7%~28%,
Advertisements

一、氨基酸代谢概况食物蛋白质 氨基酸特殊途径  - 酮酸 糖及其代谢 中间产物 脂肪及其代谢 中间产物 TCA 鸟氨酸 循环 NH 4 + NH 3 CO 2 H2OH2OH2OH2O 体蛋白 尿素 尿酸 激素 卟啉 尼克酰氨 衍生物 肌酸胺 嘧啶 嘌呤 生物固氮 硝酸还原 (次生物质代谢) CO.
第 七 章 氨 基 酸 代 谢 Metabolism of Amino Acids. 思考题: 1 、简述真核细胞内蛋白质降解的途径。 2 、体内氨基酸脱氨基有哪些方式?各有何特点? 3 、简述 α- 酮酸的代谢去路。 4 、丙氨酸-葡萄糖循环的过程和有何生理意义? 5 、试述尿素生成的过程、部位及调节。
植物生理 植物细胞生理基础 同工酶. 学习目标 Click to add title in here Click to add title n here  掌握同工酶的概念。  了解同工酶的意义。
第九章 核酸的降解 与核苷酸代谢.
Metabolism of Nucleotides
影响核酸生物合成的药物.
第二节 干扰DNA合成的药物  Agents Interfering with DNA Synthesis.
第十章 蛋白质降解与氨基酸代谢 (1)蛋白质的降解: 外源蛋白的消化 内源性蛋白的选择性降解 (2)氨基酸的分解代谢:
§12-3 蛋白质(Protein) 一、蛋白质的结构(p378)
第28-29章、脂代谢 28.1 脂肪细胞是哺乳动物脂肪的主要贮存处 28.2 脂肪酸氧化的主要方式是-氧化
第30-31章、 氨基酸代谢.
一轮复习 细胞的增值.
糖代谢中的其它途径.
第十一章 核酸的降解和核苷酸代谢.
第七节 维生素与辅因子.
食品生物化学 任课教师:迟明梅.
脂肪的合成代谢 (一) 原料、来源 1、脂肪合成原料 脂肪酸和甘油。 生物体能利用糖类或简单碳原物质转化为脂肪酸。
C 1.关于生物体内的遗传物质 下列说法正确的是( ) A.细菌的遗传物质主要是DNA B.病毒的遗传物质主要是RNA
问 题 探 讨 1.DNA的中文全名是什么? 2.为什么DNA能够进行亲子鉴定? 3.你还能说出DNA鉴定技术在其他方面的应用吗?
第二十三章 蛋白质的酶促降解及氨基酸代谢.
第33章、 核苷酸代谢.
第31章 氨基酸的生物合成.
氨基酸代谢 Metabolism of Amino Acids
生物技术一班 游琼英
第十章 蛋白质的酶促降解及氨基酸代谢 第一节 蛋白质的酶促降解 第二节 氨基酸的分解 第三节 氨基酸分解产物的转化
第七章 蛋白质的酶促降解和氨基酸代谢.
第二篇 发酵机制 发酵机制:微生物通过其代谢活动,利用基质(底物)合成人们所需要的代谢产物的内在规律 积累的产物 微生物菌体 酶 厌气发酵:
第十一章 含氮化合物代谢.
第七章 氨基酸代谢 Metabolism of Amino Acids 主讲教师:王爱红 延大医学院生物化学教研室.
第 八 章 蛋白质的分解代谢.
第 八 章 核 苷 酸 代 谢 Metabolism of Nucleotides.
第十章 核苷酸代谢 Chapter 9 Metabolism of nucleotide
Metabolism of Nucleotides
第八章 核苷酸代谢.
第八章 核酸结构、功能与核苷酸的代谢.
上节课内容: α-酮酸的去路: ①氨基化生成非必需氨基酸(如丙氨酸、谷氨酸和天冬氨酸由一步转氨反应合成,其它的也是通过短的,不太耗能的途径合成);②转变成糖和脂肪;③氧化供能 生糖氨基酸 生酮氨基酸 一碳单位 概念:甲基、亚甲基(-CH2-)、次甲基(-CH=)、甲酰基、亚胺甲基(-CH=NH)等,称为一碳单位。
抗恶性肿瘤药物.
第2节 DNA分子的结构和特点.
生物化学习题.
The Others Oxidative Enzyme Systems without ATP Producing
国家级精品课 药物化学 沈阳药科大学药物化学教研室.
生 物 氧 化 Biological Oxidation
第十一章 核酸的酶促降解和核苷酸代谢 本章重点讨论核酸酶的类别和特点,对核苷酸的生物合成和分解代谢作一般介绍。 第一节 核酸的酶促降解
Metabolism of Carbohydrates
第九章 核苷酸的代谢 Nucleotide Metabolism
第六章 核酸类物质的积累机制 核酸发酵是在氨基酸发酵基础上的进一步深化和发展的代谢控制发酵,即以代谢控制理论为依据,设法造就(选育)从遗传角度解除了正常代谢控制机制的突变株。
第十三章 核酸降解与核苷酸代谢 核酸和核苷酸不是营养上的必需成分。首先,核苷酸很少能被细胞直接从外界摄取,而主要是利用少数几种氨基酸(甘氨酸、天冬氨酸和谷氨酰胺)、核糖-5-磷酸、CO2等作为原料从头合成的,或者利用细胞内的游离碱基或核苷进行补救合成。其次,核酸的降解也不能为细胞提供能量。
第 八 章 核 苷 酸 代 谢 Metabolism of Nucleotides.
第四章 生物氧化 Biological Oxidation.
第九章 核苷酸代谢 主讲人:龙 雁 华. 第九章 核苷酸代谢 主讲人:龙 雁 华 第九章 核苷酸代谢 已有的学习基础 核酸的结构——核苷酸是核酸的基本组成单位.
生 物 氧 化 Biological Oxidation
Nucleotides metabolism
遗传物质--核酸 核酸分子组成 核酸分子结构.
第十二章 核苷酸代谢 metabolism of nucleotide.
第九章 核苷酸的代谢 Nucleotide Metabolism
第 八 章 核 苷 酸 代 谢 Metabolism of Nucleotides.
Degradation of nucleic acid & metabolism of nucleotides
第12章 核酸与核苷酸代谢 主讲教师:卢涛.
第3节 遗传信息的携带者 —— 核酸.
Metabolism of Nucleotides
第二节 DNA分子的结构.
Chaper 12 核酸的酶促降解和核苷酸代谢 1 核酸的消化和酶促降解 2 核苷酸的分解代谢 核苷酸的生物合成和调节 核苷酸合成的抗代谢物.
超越自然还是带来毁灭 “人造生命”令全世界不安
遗传物质--核酸 核酸分子组成 核酸分子结构.
四、胞液中NADH的氧化 1. -磷酸甘油穿梭作用: 存在脑和骨骼中.
有关“ATP结构” 的会考复习.
讨论:利用已经灭绝的生物DNA分子,真的能够使灭绝的生物复活吗?
第二章 组成细胞的分子 第3节 遗传信息的携带者——核酸 (第二课时).
Chapter 6 Metabolism of Carbohydrates
Presentation transcript:

第33章 核酸的降解和核苷酸代谢

核苷酸:核酸的基本结构单位。 体内核苷酸不属营养必需物质。 而且食物来源的嘌呤和嘧啶碱很少被机体利用。 核苷酸的生物学功用: ⒈ 作为核酸合成的原料(主要功能) ⒉ 体内能量的利用形式(ATP GTP UTP CTP) ⒊ 参与代谢和生理调节(cAMP cGMP) ⒋ 组成辅酶(NAD FAD NAD+ NADP+ HSCoA) ⒌ 活化中间代谢物(UDPG CDP-胆碱 SAM等)

分解 合成 何处去? 进入磷酸戊糖途径 或重新合成核酸

核酸的解聚作用 核酸酶:作用于核酸的磷酸二酯酶称为核酸酶,按其作用位置分为: 一.核酸外切酶:作用于核酸链的末端(3’端或5’端),逐个水解下核苷酸。 脱氧核糖核酸外切酶:只作用于DNA 核糖核酸外切酶:只作用于RNA 二.核酸内切酶:从核酸分子内部切断3’,5’-磷酸二酯键。 限制性内切酶:在细菌细胞内存在的一类能识别并水解外源双链DNA的核酸内切酶,可用于特异切割DNA,常作为工具酶。

某些核酸外切酶对RNA、DNA均有作用: 特定部位的—限制性内切酶 外切酶 内切酶 RNA DNA 某些核酸外切酶对RNA、DNA均有作用: 牛脾磷酸二酯酶 3-核苷酸 蛇毒磷酸二酯酶 5-核苷酸

第一节 嘌呤核苷酸代谢 一﹑嘌呤核苷酸的合成代谢 二﹑嘌呤核苷酸的分解代谢

一﹑嘌呤核苷酸的合成代谢 两条途径: 一﹑从头合成途径(de novo synthesis): 不以现成的碱基为原料,而是以磷酸核糖﹑氨基酸﹑ 一碳单位﹑CO2等简单物质为原料,经过一系列酶 促反应,合成嘌呤核苷酸的过程。 (主要合成途径,肝组织进行此途径) 二﹑补救合成途径(salvage pathway): 利用游离的嘌呤或嘌呤核苷,经过简单的反应过程, 合成嘌呤核苷酸的过程。 (脑﹑骨髓等只能进行此途径)

(一)嘌呤核苷酸的从头合成 组织: 肝﹑小肠粘膜及胸腺 细胞内定位: 细胞液 嘌呤环中各碳原子的来源: 甲酸盐 甲酸盐

⒈ 合成途径 两个阶段: ⑴ 5-磷酸核糖→ → →次黄嘌呤核苷酸(IMP) ⑵ IMP → → →AMP﹑GMP

⑴ 5-磷酸核糖→ → →次黄嘌呤核苷酸(IMP) PRPP— 核苷酸核糖磷酸部分的供体 林-p200-201并剪接

关键酶 IMP合成的特点: IMP是在磷酸核糖 分子上逐步合成的, 而不是首先单独合成 嘌呤碱,再与磷酸核 糖结合的。

⑵ IMP → → →AMP﹑GMP 6 6 2 2

*AMP → ADP → ATP 与 GMP → GDP → GTP的转化

⒉ 从头合成的调节 IMP AMP GMP PRPP (+) 单体 二聚体 (有活性) (无活性) (+)

两个酶:① 腺嘌呤磷酸核糖转移酶(APRT) ② 次黄嘌呤-鸟嘌呤磷酸核糖转移酶(HGPRT) (二) 嘌呤核苷酸的补救合成 两个酶:① 腺嘌呤磷酸核糖转移酶(APRT) ② 次黄嘌呤-鸟嘌呤磷酸核糖转移酶(HGPRT) 反应: 腺嘌呤 + PRPP AMP + PPi 次黄嘌呤 + PRPP IMP + PPi 鸟嘌呤 + PRPP GMP + PPi *人体内还有腺苷激酶,能使腺嘌呤核苷磷酸化,生成AMP 腺嘌呤核苷 AMP APRT HGPRT HGPRT 腺苷激酶 ATP ADP

补救合成的特点:过程简单,耗能少。 补救合成的生理意义:⒈ 减少能量和氨基酸的消耗 ⒉ 弥补某些组织(脑骨髓)不能 从头合成嘌呤核苷酸的不足。

(三)嘌呤核苷酸的相互转变 顾四-p227

(四)脱氧核糖核苷酸的生成 ⒈ 核糖核苷酸的还原 — dADP﹑dGDP﹑dUDP﹑dCDP的生成

酶系 2GSH GGSG 谷胱甘肽还原酶 为变构酶,有两个亚基: R1(含–SH) R2(含铁硫蛋白) 二者结合并有Mg2+存在时具有活性。

⒉ 脱氧核苷三磷酸(dNTP)的生成 dNDP+ ATP dNTP + ADP 激酶

(五)嘌呤核苷酸的抗代谢物 为嘌呤﹑氨基酸或叶酸等的类似物,充当竞争性抑制剂, 干扰或阻断合成代谢,具有抗肿瘤的作用。 嘌呤类似物: 6-巯基嘌呤(6MP) 6-巯基鸟嘌呤 8-氮杂鸟嘌呤 氨基酸类似物:氮杂丝氨酸(重氮丝氨酸) 6-重氮-5-氧正亮氨酸 N-羟-N-甲酰甘氨酸 与天冬氨酸类似 (羽田杀菌素) 叶酸类似物:氨喋呤 甲氨喋呤(MTX) 与谷氨酰胺类似

二﹑嘌呤核苷酸的分解代谢 主要器官:肝﹑肾﹑小肠 代谢: 嘌呤碱 嘌呤核苷酸 补救合成途径 磷酸戊糖途径 尿酸(终产物) 嘌呤核苷酸 补救合成途径 1-磷酸核糖→5-磷酸核糖 磷酸戊糖途径 尿酸(终产物)

鸟嘌呤脱氨酶 顾四-p230

H2O H2O NH3 NH3 次黄嘌呤 黄嘌呤 H2O+O2 H2O2 H2O+O2 H2O2 尿囊素 尿酸 腺嘌呤 鸟嘌呤 H2O H2O NH3 NH3 次黄嘌呤 黄嘌呤 H2O+O2 H2O2 H2O+O2 H2O2 尿囊素 尿酸 H2O CO2+H2O2 2H2O+O2 尿囊酸 尿素 + 乙醛酸 H2O 2H2O 4NH3 + 2CO2 腺嘌呤脱氨酶 鸟嘌呤脱氨酶 黄嘌呤氧化酶 黄嘌呤 氧化酶 (灵长类以外的哺乳动物) 尿酸氧化酶 (人类和灵长类动物、爬虫、鸟类) 尿囊 素酶 (植物) (鱼类、两栖类) 尿囊酸酶 脲酶 (海洋无脊椎动物)

血中尿酸含量升高时,尿酸盐晶体在组织中沉积, 形成痛风症。 受累组织器官: 关节﹑软骨﹑肾﹑软组织 尿酸与痛风症的关系 血中尿酸含量升高时,尿酸盐晶体在组织中沉积, 形成痛风症。 受累组织器官: 关节﹑软骨﹑肾﹑软组织 病变: 关节炎﹑肾病﹑尿路结石 病因: 酶缺陷﹑高嘌呤饮食﹑核酸大量分解﹑肾病 治疗: ⑴ ⑵ 治疗原发病 ⑶ 进食低核酸饮食 药物:别嘌呤醇

别嘌呤醇作用的机理: 别嘌呤醇: 别黄嘌呤 底物类似物经酶 作用后成为酶的 灭活物,称之为 自杀作用物。 自杀性底物

第二节 嘧啶核苷酸代谢 一﹑嘧啶核苷酸的合成代谢 二﹑嘧啶核苷酸的分解代谢

一﹑嘧啶核苷酸的合成代谢 (一)嘧啶核苷酸的从头合成 细胞内定位:细胞液﹑线粒体 基本过程: ⑴ HCO3– ﹑Gln → → → UMP 嘧啶环中各元素的来源: 基本过程: ⑴ HCO3– ﹑Gln → → → UMP ⑵ UMP → → → CTP﹑TMP / dTMP

⒈ 从头合成途径 ⑴ 尿嘧啶核苷酸(UMP)的合成

两种氨基甲酰磷酸合成酶的比较 CPS-Ⅰ CPS-Ⅱ 细胞内定位 氮源 合成物 变构激活剂 反馈抑制剂 生理功能 酶活性的意义 线粒体(肝)   CPS-Ⅰ CPS-Ⅱ 细胞内定位 氮源 合成物 变构激活剂 反馈抑制剂 生理功能 酶活性的意义 线粒体(肝) NH3 氨基甲酰磷酸 N-乙酰谷氨酸 无 参与尿素合成 反映肝细胞的分化程度 细胞液(所有细胞) Gln UMP(哺乳动物) 参与嘧啶合成 反映细胞增殖程度  

合成特点: 先合成嘧啶环, 再与磷酸核糖 相连。 真核细胞中, 这是多功能酶 真核细胞中, 这是多功能酶 尿苷酸激酶 二磷酸核苷激酶 CTP合成酶

⑵ CTP的合成 ⑶ dTMP / TMP的生成 (dTMP)

⒉ 从头合成的调节 CPS-Ⅱ 天冬氨酸 氨基甲酰 转移酶 哺乳类 PRPP 合成酶 细菌

⒈ 嘧啶(U﹑T)+PRPP 磷酸嘧啶核苷 + PPi ⒉ 尿嘧啶 + 1-磷酸核糖 尿嘧啶核苷 + Pi (二) 嘧啶核苷酸的补救合成 ⒈ 嘧啶(U﹑T)+PRPP 磷酸嘧啶核苷 + PPi ⒉ 尿嘧啶 + 1-磷酸核糖 尿嘧啶核苷 + Pi ⒊ 尿嘧啶核苷 + ATP UMP + ADP ⒋ 脱氧胸苷+ ATP dTMP + ADP 嘧啶 磷酸核糖转移酶 尿苷 磷酸化酶 尿苷激酶 胸苷激酶

(三)嘧啶核苷酸的抗代谢物 为嘧啶﹑氨基酸或叶酸等的类似物,充当 竞争性 抑制剂,干扰或阻断合成代谢,具有抗肿瘤的作用。 嘧啶类似物:5-氟尿嘧啶(5-FU)→ FdUMP﹑FUTP 氨基酸类似物:氮杂丝氨酸 6-重氮-5-氧正亮氨酸 叶酸类似物:氨喋呤 甲氨喋呤(MTX) 改变了核糖结构的核苷类似物:阿糖胞苷﹑环胞苷 与谷氨酰胺类似

作用环节: CTP合成酶 核糖核苷酸还原酶 TMP合成酶 N5,N10-甲烯FH4

二﹑嘧啶核苷酸的分解代谢 ⒈ 嘧啶核苷酸的水解 嘧啶核苷酸 嘧啶核苷 嘧啶碱→ → → H2O Pi Pi 1-磷酸核糖 ⒈ 嘧啶核苷酸的水解 核苷酸酶 核苷磷酸化酶 嘧啶核苷酸 嘧啶核苷 嘧啶碱→ → → H2O Pi Pi 1-磷酸核糖

嘧啶的降解:这是一个还原降解过程。 NH3+CO2+ NH3+CO2+ 胞嘧啶 尿嘧啶 二氢尿嘧啶 胞嘧啶 尿嘧啶 二氢尿嘧啶 H2O NH3 NAD(P)H+H+ NAD(P)+ H2O β-丙氨酸 β-脲基丙酸 H2O 胸腺嘧啶 二氢胸腺嘧啶 NAD(P)H+H+ NAD(P)+ H2O β-氨基异丁酸 β-脲基异丁酸 胞嘧啶脱氨酶 二氢尿嘧啶脱氢酶 二氢嘧啶酶 脲基丙酸酶 NH3+CO2+ 二氢尿嘧啶脱氢酶 二氢嘧啶酶 脲基丙酸酶 NH3+CO2+

⒉ 嘧啶碱的分解 顾三-p236