第4章 直流迴路 4-1 節點電壓法 4-2 迴路電流法 4-3 重疊定律 4-4 戴維寧定理 4-5 最大功率轉移定理 4-6 諾頓定理

Slides:



Advertisements
Similar presentations
專業科目必修 管理學概論、化 妝品行銷與管理、 專題討論、藥妝 品學、流行設計、 專題講座、時尚 創意造型與實務 專業科目必修 化妝品法規、生 理學、化妝品原 料學、化妝品有 效性評估、時尚 化妝品調製與實 務、藝術指甲、 生物化學概論、 美容經絡學、校 外實習 專業科目必修 應用色彩學、化 妝品概論、時尚.
Advertisements

第四章 直流迴路 惠斯登電橋及其應用.
第 3 章 方程與圖像.
第 十 三 章 交 流 網 路 路電流法、節點電壓法、重疊定理、 戴維寧定理、諾頓定理…等方法, 其目的都是為了解決電路中的各種
一旦以節點電壓定義好每一分枝電流,克希荷夫電流定律可用於每個節點:
直流迴路.
第四章直流網路分析 4-1 節點電壓法 4-2 迴路電流法 4-3 重疊定理 4-4 戴維寧定理 4-5 諾頓定理
1.8 支路电流法 什么是支路电流法 支路电流法的推导 应用支路电流法的步骤 支路电流法的应用举例.
第4章 直流網路分析 4-1 節點電壓法 4-2 迴路電流法 4-3 重疊定理 4-4 戴維寧定理 4-5 諾頓定理
合肥市职教中心 李劲松.
4-1 節點電壓法 4-2 迴路電流法 4-3 重疊定理 4-4 戴維寧定理 4-5 諾頓定理 4-6 戴維寧與諾頓等效電路之轉換
國立瑞芳高工電機科 92學年度教學觀摩 科目:基本電學I—重疊定理 主講人:李志偉 老師.
陳進祥 朱弘仁 陳曦照 譯 Irwin 原著 滄海書局 出版
Chapter 2 Resistive Circuits (電阻性電路)
基本電學I 第四章 直流迴路 4-1 節點電壓法 4-2 迴路電流法 4-3 重疊定理 4-4 戴維寧定理 4-5 最大功率轉移
電 路 學 2. 電 路 分 析 方 法 2-1 電阻串聯電路與分壓定理 2-4 網目電流分析法 2-2 電阻並聯電路與分流定理 本章練習
第四章 數列與級數 4-1 等差數列與級數 4-2 等比數列與級數 4-3 無窮等比級數 下一頁 總目錄.
重疊定理-1 Step1 使網路只保留其中一個電源,而將其他的電源移開。移開電源的原則如下: 1. 1 移開電壓源時,將兩端視為短路
99 Chapter 5 分析法及相關討論(直流).
電 路 學 1. 電路元件與基本定律 1-1 定義與單位 1-5 被動元件與主動元件 1-2 電荷與電流 1-6 歐姆定律
Chapter 12 串級放大 Chih-Hu Wang.
破漏的囊袋.
第3章 電 阻 3-1 串聯電路的定義與特性 3-2 克希荷夫電壓定律、分壓定理 3-3 並聯電路的定義與特性
實習一 二極體的基本應用 二極體V-I 特性曲線 理想二極體模型 (2)順向偏壓時,二極體 短路 (1)逆向偏壓時,二極體 斷路
PWM (Pulse width modulation)驅動:脈波寬度調變就是依照控制訊號的大小,調整脈波串列寬度,控制電壓值愈大,脈波寬度就愈寬,利用正弦波做為脈寬調變電路的控制電壓,其頻率為需要的輸出頻率,以脈波控制電晶體ON-OFF動作,以調節馬達線圈電流。 脈波寬度調變技術如圖10-28所示,圖10-28(a)所示為使用電晶體的單相眽寬調變變頻電路,電路中T1、T2島通狀態由兩個比較器控制,如圖10-28(b)所示。
基本電學I 第一章 電的基本概念 1-1 電的本性 1-2 單位 1-3 能量 1-4 電荷 1-5 電流 1-6 電壓 1-7 功率
3.3 支路法 总共方程数 2 b 1、概述 若电路有 b 条支路,n 个节点 求各支路的电压、电流。共2b个未知数
電 路 學 5. 一階電路:RC與RL電路 5-1 一階微分方程式與一階電路之響應 5-7 無源RL電路與自然響應 5-2 電容器的直流穩態
基本電學 串聯電路與並聯電路之應用 任課教師 : 林瑞祥老師 文定宇老師.
颈部淋巴结的分区.
Chapter 7 模擬電路分析的種類及輸出格式 (Part I)
第六章 電流 7-1 電動勢與電流 7-2 電阻與歐姆定律 7-3 電功率及電流的熱效應 7-4 克希何夫定則
電子工程概論 (第七章 一般的電阻電路).
變壓器原理與應用 1.變壓器的原理 2.理想變壓器 3.實際變壓器 4.變壓器之串、並聯特性 課本 頁
第9章 場效電晶體放大電路 課本圖檔.
偏壓電路 (a) 適當的偏壓設計 (b) 不適當的偏壓設計 ▲ 圖5-1 偏壓電路的影響.
§ 9-6 BJT 放大器的低頻響應 • 應用:BJT 任何組態。 • 步驟: 1. 對每個C ⇒求出 R-C 組合電路 等效電阻。
實習十五 積體電路穩壓器 穩壓器的基本分類 線性穩壓器(Linear Regulator)
4 額外的電路分析技巧 陳進祥 朱弘仁 陳曦照 譯 Irwin 原著 滄海書局 出版.
色碼電阻 2019/4/5.
Lecture 08 Fault current (II) meiling CHEN 2005.
第一章 电路基本分析方法 本章内容: 1. 电路和电路模型 2. 电压电流及其参考方向 3. 电路元件 4. 基尔霍夫定律
7-1 電路的直流暫態 7-2 電路的直流暫態 7-3 與混合電路
基本電學II 第9章 基本交流電路 9-1 R、L與C的交流特性 9-2 R-C串聯電路 9-5 R-C並聯電路 9-6 R-L並聯電路
戴維寧等效電路 通訊三甲 陳慶哲 B
Basic Components and Circuits
實習4-1 歐姆定律實驗 實習4-2 電阻串並聯電路實驗 實習4-3 克希荷夫定律實驗 實習4-4 惠斯登電橋實驗 實習4-5 重疊定理實驗
第2章 直流電路 2-1 歐姆定理 2-2 克希荷夫定理 2-3 串、並聯電路的定義及量測 2-4 電功率的定義
電路狀況簡介 ▲圖3-2 基本電路及其各種狀況 開關打開與關閉造成 電路的斷路與通路 將元件兩端的接點用 導線連接會形成短路 絕緣部份破裂,
基本電學I 第三章 串並聯電路 3-1 串聯電路的定義與特性 3-2 克希荷夫電壓定律 3-3 並聯電路定義與特性 3-4 克希荷夫電流定律
中 二 級 電 子 與 電 學 串 聯 電 路 和 並 聯 電 路.
第 10 章 交流電功率 10-2 瞬間功率與平均功率 10-1 前言 ※ ……………………………………………………………
回顾: 支路法 若电路有 b 条支路,n 个节点 求各支路的电压、电流。共2b个未知数 可列方程数 KCL: n-1
韋斯登電橋 Wheatstone Bridge ATS電子部製作.
交流電路(R-L) R-L Series Circuits ATS電子部製作.
實驗六 稽納二極體之特性與應用 實驗目的 學習使用示波器描繪稽納二極體特性曲線圖。 瞭解電壓輸入變動與負載變動對稽納穩壓電路的影響。
電子學實驗(三) --非反相運算放大器電路
6年級數學 方程式計算複習 巫鑛友老師製作 2003年4月13日.
第6章 電晶體放大電路實驗 6-1 小訊號放大電路 6-2 小訊號等效電路模型 6-3 共射極放大電路實驗 6-4 共集極放大電路實驗
設計與科技 電子學.
例題 1. 多項式的排列 1-2 多項式及其加減法 將多項式 按下列方式排列: (1) 降冪排列:______________________ (2) 升冪排列:______________________ 排列 降冪:次數由高至低 升冪;次數由低至高.
( )下列何者正確? (A) 7< <8 (B) 72< <82 (C) 7< <8 (D) 72< <82 C 答 錯 對.
Series-Series Feedback
1-4 和角公式與差角公式 差角公式與和角公式 1 倍角公式 2 半角公式 和角公式與差角公式 page.1/23.
1 試求下列三角形的面積: 在△ABC中,若 , ,且∠B=45° 在△PQR中,若 , ,且∠R=150° (1) △ABC面積 。
基本電學I 第一章 電的基本概念 1-1 電的本性 1-2 單位 1-3 能量 1-4 電荷 1-5 電流 1-6 電壓 1-7 功率
明愛屯門馬登基金中學 中國語文及文化科 下一頁.
以下是一元一次方程式的有________________________________。
第三章 串並聯電路 3-1 串聯電路型態及其特性 3-2 克希荷夫電壓定律 3-3 並聯電路型態及其特性 3-4 克希荷夫電流定律
班 級: 通訊三甲 學 號: B 學 生: 楊 穎 穆 老 師: 田 慶 誠
Presentation transcript:

第4章 直流迴路 4-1 節點電壓法 4-2 迴路電流法 4-3 重疊定律 4-4 戴維寧定理 4-5 最大功率轉移定理 4-6 諾頓定理 ==== 第4章 直流迴路 ==== 第4章 直流迴路 4-1 節點電壓法 4-2 迴路電流法 4-3 重疊定律 4-4 戴維寧定理 4-5 最大功率轉移定理 4-6 諾頓定理 4-7 戴維寧與諾頓之轉換

前言 前言 在上一章,我們學會了基本串並聯電路的特性及其基本運算;然而,真正的實用電路往往是更為複雜多變的網路架構,在面對這些複雜多變的網路時,如果想要快速地求得某一元件的電路特性(電流或電壓等)時,就必須使用更好的解電路技巧才能做得到。 本章將介紹電路學中是很重要的定理和方法,包括節點電壓法、迴路電流法、重疊定律、戴維寧定理、諾頓定理及最大功率轉換定理等。本章著重在電路的分析、電路方程式的建立、電流或電壓的運算及驗證;除了使用正確的方法、還要有細心的運算技巧,方能正確快速的解題。

4-1.1 相關名詞 節點電壓法主要是利用克希荷夫電流定律(KCL)及歐姆定律,寫出節點的電流方程式,再解方程式求得節點電壓。 相關名詞: 4-1.1 相關名詞 節點電壓法主要是利用克希荷夫電流定律(KCL)及歐姆定律,寫出節點的電流方程式,再解方程式求得節點電壓。 相關名詞: 1.節點:是指兩個或兩個以上支路的連接點。(參考圖4-1) 2.參考節點:當作零電位或接地點的節點;通常為最下方的節點。 3.節點電壓:各節點對參考節點之間的電位差,如圖中的V1、V2及V3。 4.支路電流:節點電壓除以該節點間的電阻,如圖中的I1、I2及I3。 圖4-1 使用節點電壓法之電路標示

4-1.2 解題步驟 節點電壓法的解題步驟: 1.選定接地參考節點,其電壓值為零。 2.標示「獨立」的節點電壓如圖4-1中的V2。 4-1.2 解題步驟 節點電壓法的解題步驟: 1.選定接地參考節點,其電壓值為零。 2.標示「獨立」的節點電壓如圖4-1中的V2。 所謂「獨立」是指其電壓值未知者,已知電壓者可以不需標示如圖4-1中的V1及V3(此處V1=E1,V3=-E2)。 3.假設流入或流出「獨立節點」的電流方向,並以I1、I2、I3及等標示之。 遇有已知電流(如電流源),則以其方向為該支路之電流方向,如例題4-4。

4-1.2 解題步驟 4.以歐姆定律寫出各支路電流的算式。 4-1.2 解題步驟 4.以歐姆定律寫出各支路電流的算式。 有N個節點的電路通常需列出N-1個算式,該支路如有電流源者,直接以電流源電流為支路電流。 5.針對每一獨立節點寫出KCL電流方程式。 6.解聯立方程式,求出各節點電壓; 再依題目需求帶回步驟4.求得各支路電流。如果求得的電流值為負的時候,表示:該電流的方向與步驟3.假設方向相反。接著以一些例驗證節點電壓法的使用方法。

如下圖(a)所示,試求流過各電阻之電流大小及方向? 節點電壓法用於電壓源及電流源 4 - 1 節點電壓法用於電壓源及電流源 如下圖(a)所示,試求流過各電阻之電流大小及方向? (a) 例4-1圖 (b)

如下圖(a)所示,試求流過各電阻之電流大小及方向? 節點電壓法用於電壓源及電流源 4 - 1 節點電壓法用於電壓源及電流源 如下圖(a)所示,試求流過各電阻之電流大小及方向? (1)以下方公共點為接地參考節點,如圖(b)。 (2)選定獨立節點,並設定其節點電壓為V1。 (3)假設各支路電流方向,並標示如I1、I2、I3等。 (4)以歐姆定律寫出各支路電流的算式。 (5) 以KCL寫出電流方程式: I1+I2+I3=0 (a) 例4-1圖 (b)

通分再去分母得2V1-12+3V1+36+V1=0,故,V1=-4 V 。 (7) 代入步驟(4)求得各支路電流: 節點電壓法用於電壓源及電流源 4 - 1 節點電壓法用於電壓源及電流源 (6)解方程式,求出節點電壓: 通分再去分母得2V1-12+3V1+36+V1=0,故,V1=-4 V 。 (7) 代入步驟(4)求得各支路電流: (8) 驗證 (V1節點) : I1+I2+I3= ,符合KCL定律。 (負號表示方向假設錯誤,應為向右) (方向向右) (負號表示方向假設錯誤,應為向上)

1.將本題中6V極性上下顛倒,重算各電阻之電流。 節點電壓法用於電壓源及電流源 1.將本題中6V極性上下顛倒,重算各電阻之電流。

1.將本題中6V極性上下顛倒,重算各電阻之電流。 節點電壓法用於電壓源及電流源 1.將本題中6V極性上下顛倒,重算各電阻之電流。 (1)以下方公共點為接地參考節點,如圖(b)。 (2)選定獨立節點,並設定其節點電壓為V1。 (3)假設流入或流出「獨立節點」的各支路電流方向,並標示如I1、I2、I3等。 (4)以歐姆定律寫出各支路電流的算式。 (5) 以KCL寫出電流方程式: I1+I2+I3=0

1.將本題中6V極性上下顛倒,重算各電阻之電流。 節點電壓法用於電壓源及電流源 1.將本題中6V極性上下顛倒,重算各電阻之電流。 (6)解方程式,求出節點電壓: 通分再去分母得2V1+12+3V1+36+V1=0,故,V1=-8 V 。 (7)代入步驟(4)求得各支路電流: (8) 驗證 (V1節點) : I1+I2+I3= ,符合KCL定律。 (負號表示方向假設錯誤,應為向右) (方向向右) (負號表示方向假設錯誤,應為向上)

如下圖(a)所示,試求流過各電阻之電流大小及方向? 節點電壓法應用於多節點電路 4 - 2 節點電壓法應用於多節點電路 如下圖(a)所示,試求流過各電阻之電流大小及方向? (a) (b) 例4-2圖(1)

(1)以下方公共點為接地參考節點,如圖(b)。 (2)設節點電壓:V1、 V2 、 V3 ,並從圖中得知:V1=12V,V3=6V 。 節點電壓法應用於多節點電路 4 - 2 節點電壓法應用於多節點電路 (1)以下方公共點為接地參考節點,如圖(b)。 (2)設節點電壓:V1、 V2 、 V3 ,並從圖中得知:V1=12V,V3=6V 。 (3)針對V2點,假設各支路電流方向,並標示I1、I2、I3。 (4)以KCL寫出電流方程式: I1+I2=I3 ,通分母後得24-2V2+6-V2=3V2

(7)驗證(對V2點而言):I1+I2= ,符合KCL定律。 節點電壓法應用於多節點電路 4 - 2 節點電壓法應用於多節點電路 (5)解方程式,求出節點電壓V2 =5V 。 (6)再代入步驟(4),求得各支路電流。 (向右) (向左) (向下) (7)驗證(對V2點而言):I1+I2= ,符合KCL定律。

節點電壓法應用於多節點電路 例4-2圖(2) 2.如右圖(2)所示,求流經12Ω及12V的電流。

(2)設節點電壓:V1、 V2 、 V3 ,並從圖中得知:V1=12V,V3=-20V 。 節點電壓法應用於多節點電路 例4-2圖(2) (1)以下方公共點為接地參考節點。 (2)設節點電壓:V1、 V2 、 V3 ,並從圖中得知:V1=12V,V3=-20V 。 (3)對V2點,假設各支路電流方向,並標示I1、I2、I3。 (4)以KCL寫出電流方程式: I1+I2=I3 ,通分母後得24-2V2-60-3V2=V2 2.如右圖(2)所示,求流經12Ω及12V的電流。

2.如右圖(2)所示,求流經12Ω及12V的電流。 (5)解方程式,求出節點電壓V2 =-6V 。 (6)再代入步驟(4),求得各支路電流。 節點電壓法應用於多節點電路 2.如右圖(2)所示,求流經12Ω及12V的電流。 例4-2圖(2) (5)解方程式,求出節點電壓V2 =-6V 。 (6)再代入步驟(4),求得各支路電流。 (向右) 流經12之電流 (向上) 流經12V之電流= I4+ I1=4+3=7A(向上) 。

如下圖(a)所示,試求流過各電阻之電流大小及方向? 節點電壓法用於交叉電源電路 4 - 3 節點電壓法用於交叉電源電路 如下圖(a)所示,試求流過各電阻之電流大小及方向? (a) (b) 例4-3圖

(1)選定中心節點,並設節點電壓為Vo,如圖(b)。 (2)假設各支路電流方向均朝外,並標示 I1、I2、I3 、 I4 。 節點電壓法用於交叉電源電路 4 - 3 節點電壓法用於交叉電源電路 (1)選定中心節點,並設節點電壓為Vo,如圖(b)。 (2)假設各支路電流方向均朝外,並標示 I1、I2、I3 、 I4 。 (3)以KCL寫出電流方程式: I1+I2+I3+I4=0 (4)解方程式,求出節點電壓Vo =3V。

(6)驗證:I1+I2+I3+I4=1.5-2.25+2-1.25=0,符合KCL定律。 節點電壓法用於交叉電源電路 4 - 3 節點電壓法用於交叉電源電路 (5)再代入步驟(4)求得各支路電流。 (方向向上) (方向假設錯誤,正確應為向左) (方向向下) (方向假設錯誤,正確應為向右) (6)驗證:I1+I2+I3+I4=1.5-2.25+2-1.25=0,符合KCL定律。

如下圖(a)所示,試求V1及V2電壓各為何? 節點電壓法用於兩個電流源電路 4 - 4 節點電壓法用於兩個電流源電路 如下圖(a)所示,試求V1及V2電壓各為何? (a) (b) 例4-4圖

(1)以下方公共點為接地參考節點,如圖(b)。 (2)設節點電壓:V1、 V2 。 節點電壓法用於兩個電流源電路 4 - 4 節點電壓法用於兩個電流源電路 (1)以下方公共點為接地參考節點,如圖(b)。 (2)設節點電壓:V1、 V2 。 (3)假設各支路電流方向,並標示 I1、I2 、 I3、I4 、 I5。 (4)針對V1點,以KCL寫出電流方程式:I1=I2+I3 ………… (5)針對V2點,以KCL寫出電流方程式:I3=I4+I5 ………… (6)解方程式 、  ,求出節點電壓:V1 =9V,=-1.5V

迴路電流分析法是利用克希荷夫電壓定律(KVL)及歐姆定律,列出各迴路的電壓方程式,再解聯立方程式求得迴路電流。 迴路電流法的解題步驟: 1.決定最小的迴路數,也就是網目數,如圖4-2(a)的最小迴路數 為2。 2.設定各迴路電流方向,可為順時針或逆時針,並標示迴路電流 之名稱例如I1、I2及I3等。 當迴路中有電流源存在時,即可以該電流源的電流值為該迴路之電流,不須再計算,如圖4-2(b)之I2電流大小及方向應與電流源I相同,若預設相反之電流方向,其大小為-I。

迴路電流分析法 (a) (b) 圖4-2 迴路電流法解題說明圖

3.以KVL寫出各迴路的電壓方程式。其參考格式如下: 「迴路內各電阻之和」×「迴路電流」± 迴路電流分析法 3.以KVL寫出各迴路的電壓方程式。其參考格式如下: 「迴路內各電阻之和」×「迴路電流」± 「相鄰迴路間各電阻之和」×「相鄰迴路電流」=「電動勢代數和」 相鄰迴路間的電阻稱為「共用電阻」,如圖4-2中的R2。 ±值的決定:當流過共用電阻的相鄰迴路電流方向相同時,取正值。       當流過共用電阻的相鄰迴路電流方向相反時,取負值。   左迴路:(R1+R2) × I1+ R2I2=E   右迴路:R2I1 +(R2+R3)×I2=0 4.解聯立方程式,求出各迴路電流。  如果求得的電流值為負的時候,表示該電流的方向與步驟2.假設方向 相反。接著以一些實例驗證迴路電流法的使用方法。

試以迴路電流法求圖(a)中各電阻上之電流I1、I2、I3 。 迴路電流法用於兩電壓源電路 4 - 5 迴路電流法用於兩電壓源電路 試以迴路電流法求圖(a)中各電阻上之電流I1、I2、I3 。 (a) (b) 例4-5圖(1)

試以迴路電流法求圖(a)中各電阻上之電流I1、I2、I3 。 (1)設定各迴路的電流方向如圖(b)。 (2)標示各迴路電流為Ia、 Ib 。 迴路電流法用於兩電壓源電路 4 - 5 迴路電流法用於兩電壓源電路 試以迴路電流法求圖(a)中各電阻上之電流I1、I2、I3 。 (1)設定各迴路的電流方向如圖(b)。 (2)標示各迴路電流為Ia、 Ib 。 (3)以KVL寫出各迴路的電壓方程式。 左迴路:(2+3+1)Ia -1Ib=13-2 → 6Ia-1Ib=11 右迴路:-1Ia+(1+2+1) Ib=2 → -1Ia+4Ib=2 (4)解方程式,求出各迴路電流  × 6+ 得23Ib=23 ∴Ib=1A 代入   得 Ia=2A (5)求各元件的電流   I1= Ia=2A , I2= Ib=1A , I3= Ia - Ib=2-1=1A ………… ………… ………… (a) (b) 例4-5圖(1)

迴路電流法用於兩電壓源電路 (a) (b) 例4-5圖(1) 3.將本例改以節點電壓法解之。

(2)選定獨立節點,並設定其節點電壓為V1。 (3)假設流入或流出「獨立節點」的各支路電流方向,並標示如I1、I2、I3等。 迴路電流法用於兩電壓源電路 (a) (b) 例4-5圖(1) 3.將本例改以節點電壓法解之。 (1)以下方公共點為接地參考節點。 (2)選定獨立節點,並設定其節點電壓為V1。 (3)假設流入或流出「獨立節點」的各支路電流方向,並標示如I1、I2、I3等。 (4)以歐姆定律寫出各支路電流的算式。

(6)解方程式,求出節點電壓: 通分再去分母得39-3V1=5V1+15V1-30,故V1=3V (7)代入步驟(4)求得各支路電流: 迴路電流法用於兩電壓源電路 (a) (b) 例4-5圖(1) 3.將本例改以節點電壓法解之。 (5)以KCL寫出電流方程式:I1=I2+I3 (6)解方程式,求出節點電壓:   通分再去分母得39-3V1=5V1+15V1-30,故V1=3V (7)代入步驟(4)求得各支路電流: (向右) (向下)

4.如圖(2)所示之電路,電壓VA與VB分別為何? 迴路電流法用於兩電壓源電路 4.如圖(2)所示之電路,電壓VA與VB分別為何? 例4-5圖(2)

4.如圖(2)所示之電路,電壓VA與VB分別為何? 迴路電流法用於兩電壓源電路 4.如圖(2)所示之電路,電壓VA與VB分別為何? 例4-5圖(2) 左右兩側迴路均設定為順時針, 根據KVL,電壓升等於電壓降 右迴路 VA+4=3+6+1,得:VA =6 V 左迴路 20+1=5+6+VB,得:VB =10 V

試以迴路電流法求圖(a)中各電阻上之電流I1、I2、I3。 迴路電流法用於電壓源及電流源電路 4 - 6 迴路電流法用於電壓源及電流源電路 試以迴路電流法求圖(a)中各電阻上之電流I1、I2、I3。 (a) (b) 例4-5圖

迴路a:(3+5+2)Ia+2Ib=22+12 整理得:10Ia+2Ib=34 迴路b:有一電流源,故Ib=2A 迴路電流法用於電壓源及電流源電路 4 - 6 迴路電流法用於電壓源及電流源電路 (1)設定各迴路的電流方向如圖 (b)。 (2)標示各迴路電流為Ia、Ib。 (3)以KVL寫出各迴路的電壓方程式。 迴路a:(3+5+2)Ia+2Ib=22+12 整理得:10Ia+2Ib=34 迴路b:有一電流源,故Ib=2A (4)解方程式,求出各迴路電流: 代入 得Ia=3A (5)求各元件的電流 I1= Ia=3A;I2= Ia+Ib =3+2=5A;I3= Ib=2A ………… …………

有關重疊定律(superposition theorem)的定義、用途及解題步驟逐一說明如下: 1.定義:在多電源線性電路中,任一支路元件的電壓或電流,等於個 別電源單獨作用時所產生的電壓或電流之代數和;也就是先 個別計算,再合併彙整的電路運算技巧。 2.用途:用於求解多電源的電路,可避免解繁雜的聯立方程式。

(1)保留一個電源,移除其他電源,移除後的處理原則如下: 移除的是電壓源時,將其兩端短路。 移除的是電流源時,將其兩端開路。 重疊定律 3.解題步驟: (1)保留一個電源,移除其他電源,移除後的處理原則如下: 移除的是電壓源時,將其兩端短路。 移除的是電流源時,將其兩端開路。 (2)以前述各種電路解法,求出待求元件的電壓或電流,並標示電壓 極性或電流方向。 (3)更換為另一電源,重複步驟(1)、(2)。 (4)加總各電源單獨作用的值;依下列原則求其代數和: 電壓極性相同則相加,不同則相減。 電流方向相同則相加,不同則相減。 4.使用限制:重疊定理只能適用於線性關係的電壓及電流計算,並不 適用於非線性關係的功率計算。

如右圖所示,試求流過6歐姆電阻的電流為何? 重疊定律用於電壓源及電流源電路 4 - 7 重疊定律用於電壓源及電流源電路 如右圖所示,試求流過6歐姆電阻的電流為何? 例4-7圖(1)

如右圖所示,試求流過6歐姆電阻的電流為何? 重疊定律用於電壓源及電流源電路 4 - 7 重疊定律用於電壓源及電流源電路 如右圖所示,試求流過6歐姆電阻的電流為何? 例4-7圖(1) (1)保留15V電壓源,將5A電流源開路如下圖 (2) 此時流過6電阻的電流 (向下)

如右圖所示,試求流過6歐姆電阻的電流為何? 重疊定律用於電壓源及電流源電路 4 - 7 重疊定律用於電壓源及電流源電路 如右圖所示,試求流過6歐姆電阻的電流為何? (3)保留5A電流源,將15V電壓源短路如下圖 (4)此時流過6電阻的電流 (向下) (5)求總和:由於此處電流方向均為向下,其代數和直接相加即可。 例4-7圖(1)

重疊定律用於電壓源及電流源電路 5.本例中,試求流過9歐姆電阻的電流為何?

5.本例中,試求流過9歐姆電阻的電流為何? (向右) 保留15V電壓源時 保留5A電流源時 (向左) 故I=IV+IA=1A(向左) 重疊定律用於電壓源及電流源電路 5.本例中,試求流過9歐姆電阻的電流為何? 保留15V電壓源時 保留5A電流源時 (向右) (向左) 故I=IV+IA=1A(向左)

6.如右圖(2)所示之電路,則流經5Ω 電阻之電流與其所消耗之功率為 瓦特。 重疊定律用於電壓源及電流源電路 6.如右圖(2)所示之電路,則流經5Ω 電阻之電流與其所消耗之功率為 瓦特。 例4-7圖(2)

6.如右圖(2)所示之電路,則流經5Ω 電阻之電流與其所消耗之功率為 80 瓦特。 重疊定律用於電壓源及電流源電路 6.如右圖(2)所示之電路,則流經5Ω 電阻之電流與其所消耗之功率為 80 瓦特。 例4-7圖(2) 重疊定律:20V作用,10A開路,IV=4 A;10A作用,20V短路,IA=0A 合併後,I= IV + IA =4A,P= I2 × R= 42 × 5=80W

重疊定律用於三電流源電路 4 - 8 重疊定律用於三電流源電路 如右圖所示,試求IX及VX 之值為何? 例4-8圖

4 - 8 重疊定律用於三電流源電路 如右圖所示,試求IX及VX 之值為何? (1)保留3A電流源 此時IX、VX (向右) 例4-8圖 此時IX、VX (向右) 註: 表示上面。-,下面為正。

4 - 8 重疊定律用於三電流源電路 (2)保留中間2A電流源 此時IX、VX (向右) (3)保留右邊2A電流源 例4-8圖 (2)保留中間2A電流源 此時IX、VX (向右) (3)保留右邊2A電流源 如右圖所示,試求Ix及Vx之值為何?

重疊定律用於三電流源電路 4 - 8 重疊定律用於三電流源電路 如右圖所示,試求Ix及Vx之值為何? (4)求總和: (向右) 例4-8圖

重疊定律應用 4 - 9 重疊定律應用 如右圖所示,試求流過6Ω電阻的電流為何? 例4-9圖

重疊定律應用 4 - 9 重疊定律應用 如右圖所示,試求流過6Ω電阻的電流為何? (1)保留5A電流源 例4-9圖 (向右下)

4 - 9 重疊定律應用 如右圖所示,試求流過6Ω電阻的電流為何? (2)保留10V電壓源 (向右下) (3)求總和: (向右下) 例4-9圖 (向右下) (3)求總和: (向右下)

重疊定律應用 7.本例中,試求流過1Ω電阻的電流為多少?

保留5A電流源時 IA =5A 保留10V電壓源時 IV =0 故I1Ω =IA+IV=5+0=5A 重疊定律應用 7.本例中,試求流過1Ω電阻的電流為多少? 保留5A電流源時 IA =5A  保留10V電壓源時 IV =0  故I1Ω =IA+IV=5+0=5A

有關戴維寧定理(Thevenin's theorem) 說明如下: 1.定義:在複雜的線性網路中,針對某一元件(例如圖4-3中的RL)兩 端點看進去的電路,都可以化簡為一電壓源與一電阻串聯的 等效電路;其中電壓源ETh稱為此一複雜線性網路的戴維寧等 效電壓,電阻RTh則是其戴維寧等效電阻。。 2.用途:戴維寧定理是電路解析最常用的方法之一,可用來簡化電 路,尤其在求取負載最大功率時,更是不可缺少的一種方 法。 (a)複雜的原電路 (b)戴維寧等效電路 圖4-3 戴維寧定理說明圖

(1)將待測電阻(如圖4-3中的RL)移開,形成開路並標示為a、b兩端。 戴維寧定理 3.戴維寧定理解題步驟: (1)將待測電阻(如圖4-3中的RL)移開,形成開路並標示為a、b兩端。 (2)求ETh:也就是開路兩端的電位差,即ETh=Eab;其求法可使用分壓定 則、節點電壓法、重疊定理等方法求之。 (3)求RTh:也就是開路兩端看進去的等效電阻,即RTh=Rab;計算之前必 須先將所有電壓源短路,電流源開路。 (4)將ETh、RTh填入戴維寧等效電路,並將移去的待測電阻RL接回a、b兩 端如圖4-3(b)所示。 (5)以歐姆定律求其電壓或電流。

試求下圖(a)電路中a、b兩端的戴維寧等效電路。 戴維寧電路基本運算 4 - 10 戴維寧電路基本運算 試求下圖(a)電路中a、b兩端的戴維寧等效電路。 (a) (b) 例4-10圖(1)

(1)求ETh:即Vab,因為a、b兩端開路,10Ω電阻沒有電流流過,不產生壓降,因此Vab實際上是求3Ω兩端電壓;依分壓定則得: 戴維寧電路基本運算 4 - 10 戴維寧電路基本運算 (1)求ETh:即Vab,因為a、b兩端開路,10Ω電阻沒有電流流過,不產生壓降,因此Vab實際上是求3Ω兩端電壓;依分壓定則得: (2)求RTh:將電壓源短路後,a、b兩端的等效電阻。 RTh=(6 // 3 )+10=2+10=12Ω (3)將ETh、RTh值填入圖(1)(b)的戴維寧等效電路即可。

8.本例題中,當ab兩端接一8Ω負載,則負載電流為 A。 戴維寧電路基本運算 8.本例題中,當ab兩端接一8Ω負載,則負載電流為  A。

8.本例題中,當ab兩端接一8Ω負載,則負載電流為 0.2 A。 戴維寧電路基本運算 8.本例題中,當ab兩端接一8Ω負載,則負載電流為  0.2 A。

9.試求右圖(2)電路中之5Ω電阻的戴維寧等 效電路:ETh= V,RTh= Ω IL= A。 戴維寧電路基本運算 9.試求右圖(2)電路中之5Ω電阻的戴維寧等 效電路:ETh=    V,RTh=  Ω IL=   A。 例4-10圖(2)

9.試求右圖(2)電路中之5Ω電阻的戴維寧等 效電路:ETh= 15 V,RTh= 5 Ω IL = 1.5 A。 戴維寧電路基本運算 9.試求右圖(2)電路中之5Ω電阻的戴維寧等 效電路:ETh=  15  V,RTh= 5  Ω IL =  1.5  A。 例4-10圖(2) (1)5Ω電阻移開,兩端的電壓為ETh=53=15V (2) 5A電流源開路,5Ω電阻看進去的電阻為RTh=2+3=5Ω (3) 5Ω電阻接回去,

試求下圖(a)電路中a、b兩端的戴維寧等效電路。 配合重疊定理的戴維寧電路(一) 4 - 11 配合重疊定理的戴維寧電路(一) 試求下圖(a)電路中a、b兩端的戴維寧等效電路。 例4-11圖 (a) (b)

4 - 11 配合重疊定理的戴維寧電路(一) (1)求ETh:以重疊定理求之。 電壓源短路時 電流源開路時 重疊得ETh=Vab1+Vab2=54+9=63V

(2)求RTh:將電壓源短路後,電流源開路,求a、b兩端的等效電阻 RTh= Rab=3+6=9Ω 配合重疊定理的戴維寧電路(一) 4 - 11 配合重疊定理的戴維寧電路(一) (2)求RTh:將電壓源短路後,電流源開路,求a、b兩端的等效電阻 RTh= Rab=3+6=9Ω (3)將ETh 、RTh值填入圖(b)的戴維寧等效電路即可。

試求下圖(a)電路中RL兩端的戴維寧等效電路。 配合重疊定理的戴維寧電路(二) 4 - 12 配合重疊定理的戴維寧電路(二) 試求下圖(a)電路中RL兩端的戴維寧等效電路。 例4-12圖 (a) (b)

4 - 12 配合重疊定理的戴維寧電路(二) (1)求ETh:以重疊定理求之。 電流源開路時 電壓源短路時 重疊得ETh=Vab1+Vab2=25+15=40V

(2)求RTh:將電壓源短路、電流源開路如下圖。 配合重疊定理的戴維寧電路(二) 4 - 12 配合重疊定理的戴維寧電路(二) (2)求RTh:將電壓源短路、電流源開路如下圖。 RTh= Rab=5+3=8Ω

11.將本題中兩電源位置互換,則求得的RTh= Ω , ETh= V,RL=4Ω時,流過RL的電流為 A。 配合重疊定理的戴維寧電路(二) 11.將本題中兩電源位置互換,則求得的RTh=    Ω , ETh=    V,RL=4Ω時,流過RL的電流為  A。

11.將本題中兩電源位置互換,則求得的RTh = 6 Ω , ETh= 30 V,RL=4Ω時,流過RL的電流為 3 A。 配合重疊定理的戴維寧電路(二) 11.將本題中兩電源位置互換,則求得的RTh =  6   Ω , ETh=  30  V,RL=4Ω時,流過RL的電流為 3  A。 (1)求ETh:以重疊定理求之。 電流源開路時 電壓源短路時 Vab2=Vcd =51=5 V 重疊得ETh=Vab1+Vab2=25+5=30V

11.試將本題中兩電源位置互換,則求得的RTh= 6 Ω, ETh= 30 V,RL=4Ω時,流過RL的電流為 3 A。 配合重疊定理的戴維寧電路(二) 11.試將本題中兩電源位置互換,則求得的RTh=  6  Ω, ETh=  30  V,RL=4Ω時,流過RL的電流為 3  A。 (2)求RTh:將電壓源短路、電流源開路如下圖。 RTh= Rab=5+1=6Ω (3)求IL:=

如下圖(a)所示,試求(1)9Ω兩端的戴維寧等效電路 (2)流過9Ω的電流。 戴維寧定理用於菱形電路 4 - 13 戴維寧定理用於菱形電路 如下圖(a)所示,試求(1)9Ω兩端的戴維寧等效電路 (2)流過9Ω的電流。 (b) (a) 例4-13圖

(1)求ETh:將9Ω電阻移開,重畫電路如下圖: 戴維寧定理用於菱形電路 4 - 13 戴維寧定理用於菱形電路 (1)求ETh:將9Ω電阻移開,重畫電路如下圖: (2)求RTh:將電壓源短路後,求a、b兩端的等效電阻。 (3)將ETh 、 RTh值填入戴維寧等效電路

12.本例中,將右下角的2Ω電阻值換成4Ω,9Ω換成12Ω,則 ETh = V,I= A。 戴維寧定理用於菱形電路 12.本例中,將右下角的2Ω電阻值換成4Ω,9Ω換成12Ω,則 ETh =    V,I=    A。

12.本例中,將右下角的2Ω電阻值換成4Ω,9Ω換成12Ω,則 ETh = 0 V,I= 0 A。 戴維寧定理用於菱形電路 12.本例中,將右下角的2Ω電阻值換成4Ω,9Ω換成12Ω,則 ETh =  0  V,I=  0  A。 34=26,變成平衡電橋 (1)求ETh:將12Ω電阻移開,重畫電路如下圖: =0V (2)求I:因為兩端電壓為0,故 I=0 A

最大功率轉移的意義 4-5.1 最大功率轉移的意義 從3-5節得知:電壓源有一串聯內電阻,電流源有一並聯內電阻;而且理想電壓源內阻為0,理想電流源內阻為∞。以理想電壓源為例,當接上負載時,電壓源所供給的功率將全部轉移到負載上如圖4-4(a),也就是說其傳輸效率為100%。 (a)理想電壓源的功率傳輸 (b)一般電源的功率傳輸 圖4-4 電壓源電路

最大功率轉移的意義 4-5.1 最大功率轉移的意義 一般電源均有內阻存在如圖4-4(b),當接上負載時,電源所供給的功率,有一部分消耗在內阻,而無法全部轉移到負載上,因此其傳輸效率將會小於1;因為負載的變化,會影響線路電流,使負載功率跟著改變。如何適當地改變負載電阻,以便獲得最大的功率轉移,就是本節要加以探討的課題。

最大功率轉移的條件與結果 4-5.2 最大功率轉移的條件與結果 以圖4-4(b)為例,說明改變負載電阻RL,對負載功率改變的情形,如下:(註:RL=0表示負載短路,RL=∞表示負載開路) 1.當RL=0時,線路電流 值最大,負載功率 。 2.當RL=∞時,線路電流 ≒ 0,負載功率 。 3.當RL為任一值時, ,則

最大功率轉移的條件與結果 4-5.2 最大功率轉移的條件與結果 以觀察上式,發現當 時,PL為最大,也就是說: 當RL=R時,負載RL可以獲得最大輸出功率Pmax,此時最大輸出功率Pmax為:

最大功率轉移的條件與結果 4-5.2 最大功率轉移的條件與結果 將這種觀念應用在複雜的電路時,只要將該複雜電路先轉換成戴維寧等效電路,將其RTh視為內阻R即可;換言之,複雜電路的負載輸出最大功率,發生在「負載電阻RL」=「戴維寧等效電阻RTh」時。 在負載獲得最大輸出功率的同時,其內阻也獲得相同的功率消耗,而這個功率是一種損失,亦即負載功率(Po)=內阻損失功率( );因此,當負載獲得最大輸出功率時,其傳輸效率 ,意即只有50% 。

如右圖所示,試求:(1) RL等於多少歐姆時可得最大功率 (2)最大功率為多少瓦特? 最大功率基本運算 4 - 14 最大功率基本運算 如右圖所示,試求:(1) RL等於多少歐姆時可得最大功率 (2)最大功率為多少瓦特? 例4-14圖

如右圖所示,試求:(1) RL等於多少歐姆時可得最大功率 (2)最大功率為多少瓦特? 最大功率基本運算 4 - 14 最大功率基本運算 如右圖所示,試求:(1) RL等於多少歐姆時可得最大功率 (2)最大功率為多少瓦特? 例4-14圖 (1)RL=R=2Ω時,可得最大功率。 (2)最大功率

如圖所示電路,試求:(1)負載電阻RL為多少Ω時可獲得最大功率?(2)最大功率為多少瓦特? 配合戴維寧定理的最大功率計算 4 - 15 配合戴維寧定理的最大功率計算 例4-15圖 如圖所示電路,試求:(1)負載電阻RL為多少Ω時可獲得最大功率?(2)最大功率為多少瓦特?

如圖所示電路,試求:(1)負載電阻RL為多少Ω時可獲得最大功率?(2)最大功率為多少瓦特? 配合戴維寧定理的最大功率計算 4 - 15 配合戴維寧定理的最大功率計算 例4-15圖 如圖所示電路,試求:(1)負載電阻RL為多少Ω時可獲得最大功率?(2)最大功率為多少瓦特? (1) 將RL移開,並標示為a、b兩端,求其戴維寧等效電路。 求 RTh :將電壓源短路後,求a、b兩端的等效電阻。 RTh = Rab=6 // 3=2Ω, 故負載電阻RL 應為2Ω才能獲得最大功率。 求ETh:ETh為3Ω兩端的電壓,即 (2)最大功率

2.用途:是電路解析常用的方法,可用來化簡電路。 諾頓定理 1.定義:在複雜的線性網路中,任意兩端點看進去的電路,均可以化 簡為一電流源並聯一電阻的等效電路,如圖4-5所示。其中電 流源IN又稱為諾頓等效電流,電阻RN又稱為諾頓等效電阻。 2.用途:是電路解析常用的方法,可用來化簡電路。 (a)複雜的原電路 (b)諾頓等效電路 圖4-5 諾頓定理說明圖

(1)電將待測電阻(如圖4-6的RL)移開,並標示為a、b兩端。 諾頓定理 3.解題步驟: (1)電將待測電阻(如圖4-6的RL)移開,並標示為a、b兩端。 (2)求RN:和戴維寧等效電阻RTh的求法相同;也就是開路兩端看進 去的等效電阻,但是必須先將所有電壓源短路,電流源 開路。 (3)求IN:首先必須將a、b兩端短路,求a流向b的電流。其求法可 使用分流定則、節點電壓法、重疊定理等方法求之。 (4)將IN、RN填入諾頓等效電路,並將移去的待測電阻RL接回a、b 兩端如圖4-5(b)所示。以分流定則求之,如下:

如右圖電路中,試以諾頓定理求流經4Ω的電流。 配合重疊定理的諾頓電路(一) 4 - 16 配合重疊定理的諾頓電路(一) 如右圖電路中,試以諾頓定理求流經4Ω的電流。 例4-16圖

如右圖電路中,試以諾頓定理求流經4Ω的電流。 配合重疊定理的諾頓電路(一) 4 - 16 配合重疊定理的諾頓電路(一) 如右圖電路中,試以諾頓定理求流經4Ω的電流。 例4-16圖 (1)將待測電阻(4Ω)移開,並標示為a、b兩端 (2)求RN:將所有電壓源短路如右圖。 RN=3//6=2Ω

如右圖電路中,試以諾頓定理求流經4Ω的電流。 配合重疊定理的諾頓電路(一) 4 - 16 配合重疊定理的諾頓電路(一) 如右圖電路中,試以諾頓定理求流經4Ω的電流。 例4-16圖 (3)求IN:將a、b兩端短路,以重疊定理 求流經短路處的電流。 代數和:IN=IN1+IN2=5+3=8A

如右圖電路中,試以諾頓定理求流經4Ω的電流。 配合重疊定理的諾頓電路(一) 4 - 16 配合重疊定理的諾頓電路(一) 如右圖電路中,試以諾頓定理求流經4Ω的電流。 例4-16圖 (4)畫出諾頓等效電路如右圖。 以分流定則求其電流:

13.本試以戴維寧定理重做此題求其ETh= V, RTh= Ω, I= A。 配合重疊定理的諾頓電路(一) 13.本試以戴維寧定理重做此題求其ETh=  V, RTh=  Ω, I= A。

13.本試以戴維寧定理重做此題求其ETh= 16 V,RTh= 2 Ω , I= 2.67 A。 配合重疊定理的諾頓電路(一) 13.本試以戴維寧定理重做此題求其ETh= 16  V,RTh= 2   Ω , I= 2.67 A。 (1)將待測電阻(4Ω)移開,並標示為a、b兩端 (2)求RN:將所有電壓源短路如右圖。 RN=3//6=2Ω (3)求ETh:將a、b兩端開路,以重疊定理求開路處電壓。 代數和:ETh=ETh1+ETh2=10+6=16A

13.本試以戴維寧定理重做此題求其ETh= 16 V,RTh= 2 Ω , I= 2.67 A。 配合重疊定理的諾頓電路(一) 13.本試以戴維寧定理重做此題求其ETh= 16  V,RTh= 2   Ω , I= 2.67 A。 (4)畫出諾頓等效電路如右圖。 以歐姆定理求其電流:

如圖(a)電路中,試以諾頓定理求流經2Ω的電流。 配合重疊定理的諾頓電路(二) 4 - 17 配合重疊定理的諾頓電路(二) 如圖(a)電路中,試以諾頓定理求流經2Ω的電流。 (a) (b) 例4-17圖

(1)將待測電阻(2Ω)移開,並標示為a、b兩端 (2)求RN:將所有電流源開路如圖(b)。 RN=6//12=4Ω 配合重疊定理的諾頓電路(二) 4 - 17 配合重疊定理的諾頓電路(二) (1)將待測電阻(2Ω)移開,並標示為a、b兩端 (2)求RN:將所有電流源開路如圖(b)。 RN=6//12=4Ω (3)求IN:將a、b兩端短路,以重疊定理求流經短路處的電流。 IN1=3A IN2=6A 代數和:IN=IN1+IN2=3+6=9A 6A電流源開路時 3A電流源開路時

配合重疊定理的諾頓電路(二) 4 - 17 配合重疊定理的諾頓電路(二) (4)畫出諾頓等效電路如右圖, 以分流定則求其電流。

14.根據本例,試求流經6Ω及12Ω的電流各為多少? 配合重疊定理的諾頓電路(二) 14.根據本例,試求流經6Ω及12Ω的電流各為多少?

14.根據本例,試求流經6Ω及12Ω的電流各為多少? 配合重疊定理的諾頓電路(二) 14.根據本例,試求流經6Ω及12Ω的電流各為多少? (1) (2)

戴維寧與諾頓的轉換 綜合前述各節得知:在複雜的線性網路中,任意兩端點看進去的電路,均可以化簡為電壓源模式的戴維寧等效電路,或電流源模式的諾頓等效電路,如圖4-6所示。 圖4-6 戴維寧與諾頓的轉換

戴維寧與諾頓的轉換 圖4-6兩者均源自同一原始電路,表示兩者互為等值電路,也就是說戴維寧電路和諾頓電路是可以互相轉換的,其轉換方法和「電壓源與電流源的轉換方法」一樣,如下: 1.戴維寧等效電路 轉換為 諾頓等效電路 2.諾頓等效電路 轉換為 戴維寧等效電路

如右圖所示,試求其RL之戴維寧等效電路ETh、RTh,及諾頓等效電路IN、RN。 戴維寧電路與諾頓電路轉換應用 4 - 18 戴維寧電路與諾頓電路轉換應用 如右圖所示,試求其RL之戴維寧等效電路ETh、RTh,及諾頓等效電路IN、RN。 例4-18圖

如右圖所示,試求其RL之戴維寧等效電路ETh、RTh,及諾頓等效電路IN、RN。 戴維寧電路與諾頓電路轉換應用 4 - 18 戴維寧電路與諾頓電路轉換應用 如右圖所示,試求其RL之戴維寧等效電路ETh、RTh,及諾頓等效電路IN、RN。 本題先求戴維寧等效電路,再轉換成諾頓等效電路即可。 (1)戴維寧等效電壓ETh: (2)戴維寧等效電阻RTh:將電壓源短路後,a、b兩端的等效電阻。 RTh = (6//3) +8 = 2+8 =10Ω (3)諾頓等效電流 (4)諾頓等效電阻 RN = RTh = 10Ω (5)如右圖所示。 例4-18圖

如下圖所示,將諾頓等效電路轉換為戴維寧等效電路。 諾頓電路轉換戴維寧電路基本運算 4 - 19 諾頓電路轉換戴維寧電路基本運算 如下圖所示,將諾頓等效電路轉換為戴維寧等效電路。 (1) (2)

如下圖所示,將諾頓等效電路轉換為戴維寧等效電路。 諾頓電路轉換戴維寧電路基本運算 4 - 19 諾頓電路轉換戴維寧電路基本運算 如下圖所示,將諾頓等效電路轉換為戴維寧等效電路。 RTh = RN = 5Ω ETh = IN‧RN =3×5=15V (注意極性) (1) RTh = RN = 6Ω ETh = IN‧RN =5×6=30V (注意極性) (2)

名師教學示範 教材 教材 名師教學示範 例題4-1 節點電壓法用於電壓源及電流源 例題4-2 節點電壓法應用於多節點電路 例題4-3 節點電壓法用於交叉電源電路 例題4-4 節點電壓法用於兩個電流源電路 例題4-5 迴路電流法用於兩電壓源電路 例題4-6 迴路電流法用於電壓源及電流源電路 例題4-7 重疊定律用於電壓源及電流源電路 例題4-8 重疊定律用於三電流源電路 例題4-9 重疊定律應用 例題4-10 戴維寧電路基本運算 例題4-11 配合重疊定理的戴維寧電路(一) 例題4-12 配合重疊定理的戴維寧電路(二) 例題4-13 戴維寧定理用於菱形電路 例題4-14 最大功率基本運算 例題4-15 配合戴維寧定理的最大功率計算 例題4-16 配合重疊定理的諾頓電路(一) 例題4-17 配合重疊定理的諾頓電路(二) 例題4-18 戴維寧電路與諾頓電路轉換應用

名師教學示範 教材 教材 名師教學示範 例題4-19 諾頓電路轉換為戴維寧電路基本運算