電路學 参考書:電路學 授課教師:林國堅.

Slides:



Advertisements
Similar presentations
第十二章 单位的政府职能及分解 何康康 黄旭峰 姚苏挺.
Advertisements

中考冲刺之 ——现代文阅读技巧2.
王同学的苦恼﹗ MC 4.1 诚可贵﹗.
周煌燦 正修科技大學土木系 台灣營造協會顧問 高市土木技師公會教育訓練委員會
檢驗與測試 2017/3/2.
4.1 理想气体的压强和温度 理想气体的微观模型 (1) 忽略分子大小(看作质点) (分子线度<<分子间平均距离)
关于市场营销的分析 ——以九阳豆浆机为例 品牌经营——让每一个家庭都拥有一台九阳豆浆机 营销管理——采取文化、概念、网络等营销组合
司法体制改革与律师执业前景瞻望 黄太云
第十四章 日本法 Chapter 14: Japanese Law.
第一章 奈米科技簡介 1.1 前言 1.2 什麼是奈米? 什麼是奈米科技? 1.3 工業革命與奈米科技 1.4 國內奈米科技相關動態簡報
手太阳小肠经.
學生申訴管道 學生受教權的維護.
第二章 牛顿运动定律 动力学:研究作用于物体上的力和物体机械运动状态变化之间的关系。 本章主要内容: 1、牛顿运动三定律 2、常见力和基本力
游泳四式技術分析暨初級教法.
“风神初振”的初唐诗 俞冰沁.
职业理想近距离 班级:13302班 14302班 主持人:指定同学主持 时间:12月12日 19日.
授课教师简历 刘付才,男,中学高级教师,亳州一中南校体 育教研组长,全国体育优质课一等奖获得者,华佗 五禽戏第五十八代传承人;长期从事五禽戏教学和 研究工作,参与创编了国家级课题“校园五禽戏”; 2014年全国学生运动会展示中获得优秀表演奖; 2015年指导的五禽戏传人进行的五禽戏教学获得全 国一等奖,编著的《华佗五禽戏之简易健身操》即.
创建广东省现代教育技术 实验学校自查报告 斗门区乾务镇五山中心小学 2012年5月22日.
《模拟电路》 Analogue Electronics 信息工程学院电子工程系 李 霞.
洪涝灾害重点传染病的预防 江苏省疾病预防控制中心 汪华.
319 Chapter 10 基本元件及相量.
第十九课 南吕•一枝花 不 伏 老 关汉卿.
小 桔 灯 市场赢利能力与战略 主讲:杨贤耀.
§2-9 节点分析法 节点分析法(node-analysis method)的基本指导思想 何谓节点电压(node voltage)?
实验2 大规模直流电路的计算.
2017/4/10 电工基础 机电科 电子教研组 王宇浩.
第二章(1) 电路基本分析方法 本章内容: 1. 网络图论初步 2. 支路(电流)法 3. 网孔(回路)电流法 4. 节点(改进)电压法.
内容要点: 目的与要求: 电路的作用和组成部分 电路模型 电流和电压的参考方向 电路的基本定律 电源及其等效模型 电路参数的计算 支路电流法
我国法定计量单位及 常见使用错误 陈 浩 元 (北京师范大学学报(自然科学版)编辑部,100875,北京)
践行新时期广东精神 推进广东公路文化繁荣与发展 ——关于广东省公路文化建设与实践的思考
電容 Capacitance Capacitance & capacitors Circuit
第2章 简单电阻电路分析 2. 1 电阻 2. 2 电源 2. 3 MOSFET 2. 4 基尔霍夫定律 2. 5 电路的等效变换
《 University Physics 》 Revised Edition
《 University Physics 》 Revised Edition
Chap. 9 Sinusoidal Steady-State Analysis
第六章 轉動 6-1 角速度和角加速度 6-2 純滾動 6-3 力矩和轉動 6-4 角動量和角動量守恆定律.
电工学简明教程(第二版) 秦曾煌 主编 主讲:信息学院 薛亚茹 第0章 绪论——课程介绍.
Chapter 5 控制電源元件及其描述 線性控制電源 非線性控制電源 電壓控制電壓電源
1.9 Tellgen定理 i1 i2 即 [u1 u2````` ub ] = 0 ib  uk ik = 0
第1章 电路模型及电路定律.
实验七 受控源的实验研究 主讲教师:余善好 基础实验教学中心.
Chap. 2 Circuit Elements Contents Objectives
第一章 电路基本分析方法 本章内容: 1. 电路和电路模型 2. 电压电流及其参考方向 3. 电路元件 4. 基尔霍夫定律
第一講 總說.
Chap. 3 Simple Resistive Circuits
线性网络及电路模型.
認識電源供應器 DC POWER SUPPLY 製作者:謝連陽.
電位 Electric Potential.
陳進祥 朱弘仁 陳曦照 譯 Irwin 原著 滄海書局 出版
Fundamentals of Physics 8/e 25 - Capacitors and Capacitance
電子工程概論 (第六章 分壓及分流定理).
第 1 章 序論 §1-1 物 理 學 簡 介 §1-2 物理量的單位 輔助教學網站:
基本电路理论 第二章 电路元件 上海交通大学本科学位课程 电子信息与电气工程学院2004年7月.
Fundamentals of Physics 8/e 26 - Ohm's Law
第4章 非线性直流电路 4.1 非线性二端电阻元件 I U.
单片机应用技术 项目二 电子打铃装置 第3讲 单片机功率接口 《单片机应用技术》精品课程组 湖北职业技术学院机电工程系.
主動式積分器、微分器與濾波器 主動式積分器、微分器 i1(t) CCVS i2(t) i1(t) VCCS iC(t) C (t)
Electric Current and Magnetic Field
第六节 无穷小的比较.
静电场中的无限大问题 物理无限远: 1、并非仅指场点到“无限远” 处的位移为无穷大
第一章 电路模型和电路定律 1.1 电路和电路模型 1.2 电流和电压的参考方向 1.3 电功率和能量 1.4 电路元件 1.5 电阻元件
S3-Physics Revision ( ) Second Term.
Chapter 4 Sensor interface circuits Prof. Dehan Luo
電位 Electric Potential.
百艳图.
电路分析基础 2019/6/22.
受控電源.
一百零四學年度第一學期 電路學學期考試解答.
陳進祥 朱弘仁 陳曦照 譯 Irwin 原著 滄海書局 出版
2.1 试验: 探究小车速度随时间变化的规律.
Presentation transcript:

電路學 参考書:電路學 授課教師:林國堅

電路元件與基本定律 第一章 1-1 定義與單位 1-5 被動元件與主動元件 1-2 電荷與電流 1-6 歐姆定律 1-3 電壓、能量和功率 1-7 克希荷夫定律 1-4 電路元件

1-1 定義與單位 (Definitions And Units) 電路元件是指實驗室或工廠中常見之實際元件, 如:電阻器、電感器、電容器、電池、二極體、電晶體、電動機、 發電機 ……。 利用導線把元件連接起來便可得實際電路。 分析電路時,為使所求得的數據,如:電流、電壓、功率、能量等 符合量測的意義,必須採用標準單位系統,本書採用國際單位系統 (International System of Units),簡稱 SI 制。 在 SI 制中,電流的基本單位是安培 (Ampere 簡寫 A), 其他電學單位為導出單位,可分別由安培導出。 SI 制的優點是導入十進位系統。

109 十億 (Giga) G 106 百萬 (Mega) M 103 仟 (Kilo) k 10–3 毫 (Milli) m 10–6 下表列舉 SI 制配合實際應用,常用的 10 次方及其簡寫符號。 乘 積 字   首 符 號 109 十億 (Giga) G 106 百萬 (Mega) M 103 仟 (Kilo) k 10–3 毫 (Milli) m 10–6 微 (Micro) μ 10–9 奈 (Nano) n 10–12 微微 (Pico) p

1-2 電荷與電流 (Charge and Current) 電流為單位時間 (sec) 內,通過某一截面積的電荷量 (C) 即 ,其單位為安培 (A)。 i dq dt = 由上式可得在時間 t0 和 t 之間,進入某一元件的全部電荷為 q t i dt T = - ò ( ) 注意:所考慮的電路元件都是電中性的,即沒有正或負電荷能    在元件內累積,亦即有一正 (負) 電荷流進,要有一正 (負)    電荷流出。 元件的電流流向 A B i

ò ò ò 例 1-1:進入元件的全部電荷是 q = 5t2 – 8t mC , 解: 試求 t = 0s 和 t = 2s 時之電流 i 值。 解: 由 式, i dq dt d t = - ( ) 5 8 10 2 在    時 t = s i - ( ) 10 × 8 (mA) 在    時 t = 2 s i - ( ) 10 × 8 12 (mA 例 1-2:進入一端點電流 i = 20t – 5 mA, 試求 t = 1s 和 t = 4s 之間,進入端點的全部電荷。 解: 由 式, q t i dt T = - ò ( ) q idt t = ò q t dt = - ò 1 4 2 20 5 10 135 ( ) mC

1-3 電壓、能量和功率 (Voltage, Energy and Power) 電壓為移動 1 單位 (1庫侖) 電荷,從元件之一端點移至另一端點 所作的功,其單位為伏特 (Voltage,簡寫V)。 若在某元件上移動 1 單位電荷須作功 1 焦耳,則代表此元件上有 1V   之電壓,即 1V = 1J / C。電壓又稱為電位差或電壓降。 電壓極性表示法 A B v + - 為瞭解能量是電路供給元件或由元件供給電路,必須知道元件上 電壓的極性和流過元件的電流方向; 若正電流進入電壓正端點,那外力必須去推動電流,即供給或釋放 能量給元件,因而元件吸收能量; 若正電流從正端點流出 (進入負端點),則元件釋放能量給外接電路。

Dw = vDq lim w v q = dw dt dq vi p dw dt vi = 若流過元件所需時間是 Dt ,則功的變化率或能量 (w) 的消耗率為 或 lim D t w v q ® = dw dt dq vi 而能量消耗率即為功率 (p) 的定義,所以 p dw dt vi = vi 單位為 (J / C)(C / S) 或 (J / S), 一般定義 1J / S 為 1 瓦特 (Watt,簡寫W)。

ò ò ò ò p dw dt vi = w ( ) - ¥ = 右圖的元件所吸收的功率為 p = vi,由於電流為流入電壓之正極性, A B v + - i 欲計算在時間 t0 和 t 之間, 釋放到元件的能量, 可積分   得 p dw dt vi = w t ( ) - ò 上式表示在時間 t0 和 t 之間釋放到元件的能量。 w(t) 為在時間開始到 t 之間釋放到元件的能量, w(t0) 為在時間開始到 t0 之間釋放的能量, 假設時間開始於 t = – ¥ ,且元件的能量為零,即 w ( ) - ¥ = 若在上式中 t0 = – ¥ ,則從時間開始到 t 釋放的能量為 w t vi dt ( ) = -¥ ò 因 w t vi dt ( ) = + -¥ ò         和       可合併成 w t vi dt ( ) = + ò - -¥

ò 例 1-4:如下圖所示,進入元件 A 端點的電流 i = 4A,求: (a) 元件吸收功率。 (b) 在時間 t = 0s 和 t = 4s 間釋放到元件的能量。 V 6 + - A B 解: (a) 由 ,吸收功率 p = vi (正電流進入正端點 ), 故吸收功率 = (6)(4) = 24(W) p dw dt vi = (b) 由    ,得  w t vi dt ( ) - = ò )( 4 6 96 J

例 1-5: 一個兩端點元件吸收能量如下圖所示, 若電壓 v(t) = cos100πt (V),求 t = 1 ms 和 t = 4 ms      進入正端點的電流。   由 (1-4) 式 13 10 2 8 w (mJ) t (ms) 解: p dw dt vi = 由 ,且由吸收能量圖得知,在 t = 1ms 時 p t dw dt v i ( ) = 2 – 0 5 10 – 0 i t ( ) cos100 \ = 5 p i ( ) cos100 . = 1 5 1×10-3 2573 p ms (A) p t dw dt ( ) . = 13 – 10 8 – 2 5 同理,在 t = 4ms 時 i t ( ) . cos100 \ = 5 p i t ( ) . cos100 = 4 5 4×10-3 1 618 p ms (A)

1-4 電路元件 (Circuit Elements) 1. 電壓源(Voltage Source) 電壓源可提供電路元件兩端點間之電壓,其所提供之電壓值可為常數,或是時變者。 (1). 以電壓極性變化分為: (a). 直流電壓源:電源電壓的正負極性不隨時間而改變。 V (a) v t ( ) (b) v t ( ) (b). 交流電壓源:電源電壓的正負極性隨時間而改變。 (a) v t ( ) (b) v t ( ) (c) v t ( ) 電路學-CHAPTER 2

1. 電壓源(Voltage Source) (2). 依電源電壓值與電路元件之關係可分為: 其在端點間維持一特定電壓,此電壓與電路上其它 元件的電流或電壓完全無關。 左圖表示 v 伏特獨立電壓源之符號及極性。 + - (a) 時變 v t ( ) (b) 定值 (a) + - 任 意 網 路 (b) VCVS v 1 = m (c) CCVS i g (b). 相依電壓源:相依 (或被控制) 電壓源其端電壓與電路上某些元件 的電壓或電流有關,其電路符號如右圖 (a); 一個被電壓控制的電壓源 (VCVS) 是與電路上某些電壓有關的電源,如右圖 (b); 一個被電流控制的電壓源 (CCVS) 是與電路上某些電流有關的電源,如右圖 (c)。

2. 電流源(Current Source) 電流源可提供電路元件兩端點間之電流,其所提供之電流值可為常數,或是時變者。 (1). 依電流源所提供之流向可分為: (a). 直流電流源:所提供的電流方向是固定值。 (a) i t ( ) I (b) i t ( ) (b). 交流電流源:所提供的電流方向是交流變化者。 (a) i t ( ) (b) i t ( )

2. 電流源(Current Source) (2). 依電源電流值與電路元件之關係可分為: (a). 獨立電流源:獨立電流源是提供特定電流的兩端點元件, 此電流與電路上其它元件的電壓或電流完全無關, 左圖表示一獨立電流源的符號,i 是特定電流值, 箭頭表示電流方向。 i t I ( ) 或 獨立電流,i(t) 為時變 I 為定值 (a) 任 意 網 路 + - (b) VCCS v 1 i g = (c) CCCS b (b). 相依電流源:一個相依 (或被控制) 電流源所提供的電流,與電路上 某些元件的電壓或電流有關,其電路符號如右圖 (a); 一個被電壓控制的電流源 (VCCS) 其電流受到某些元件上之電壓所控制,如右圖 (b); 一個被電流控制的電流源 (CCCS) 其電流被某些元件之電流所控制如右圖 (c)。

3. 電阻器(Resistor) 某元件跨接於一個理想電壓源的端點間,其所產生之電流與電壓成正比, 則該元件稱為電阻器 (Resistor)。即 ,電阻的單位 (V / A) 稱為 歐姆 (Ohm),以希臘字母 Ω表示。 R v t i = ( ) 電阻的倒數稱為電導 (Conductance)。即 ,電導的單位 (A / V) 稱為姆歐 (Mho),或西門子 (Siemens,簡寫 S),以符號  或 S 表示。 G R = 1 Ω (a). 線性電阻器 (b). 非線性電阻器 1 v Ri = i R v i 斜率=電阻

= Cv 4. 電容器(Capacitor) 電容器是由上下兩片導體以及導體中間加介質材料所構成的 兩端點元件。電容器上所儲存的電荷 與其端電壓 成正比,          即 q V Cv = 故電容的單位為庫侖 / 伏特(C / V),稱為法拉 (Farad,簡寫 F)。 常以微法拉 或微微法拉 為單位。 ( m F F ) = 10-6 ( p 10-12 電容器中的電壓與電流   關係,  可由   及     得到 ( ) v - i q Cv = dq dt 電容器的電路符號 + - v i C dt dv C i =

5. 電感器(Inductor) 電感器(Inductor) Þ Þ L 電感器是將導線繞成線圈形狀而組成的兩端點元件。電感器上的 磁通量與其電流成正比, 即 N Li f = 此處為 N 匝數,L 為比例常數稱為電感器的電感量,單位為亨利 ( Henry,簡寫 H ) 根據法拉第定律知改變磁通量 會在線圈兩端產生電壓 , 此為電磁感應原理,   即 f v v N d dt = f N d dt L di f = dt di L v = Þ Þ L v - + i 電感器的電路符號

1-5 被動元件與主動元件 (Passive and Active Elements) 一個元件其消耗或儲存的能量若是符合下面定義,則稱其為被動元件,   否則為主動元件。 = ) ( ò ¥ - t dt p w + = ò t p ) ( dt w ³ v i 電阻器:其消耗的能量為 電容器:其儲存的能量為 ò + = ¥ - t dt p w ) ( ) ( 2 1 / = ò t Cv vdv C dt dv v vi w c v ò ³ = t dt R i vi 2 ) ( = -¥ v \ 故電阻器為被動元件。 [ ] ) ( 2 1 ³ = - Þ \ t Cv v C w c 故電容器亦為被動元件。

ò ò ò 電感器:其儲存的能量為 例 1-8: 下圖為電流與時間的函數描述, 其電流可表示成 ) ( ø ö è æ = dt i di ø ö è æ = ò ¥ - dt i di L vi t w ) ( 2 1 = ò t Li di i L ( ) ò ¥ - = t L dt p w v i P dv C i t ( ) , = - ¥ < £ ì í ï î 1 2 ( ) = -¥ i \ 1 ) ( 2 ³ = \ t Li w L + - H 2 i t ( ) v 故電感器也是被動元件。 l 1 2 i ( A) - ) t s 其電位、功率、與能量的分佈為何?

1-6 歐姆定律 (Ohm’s Law) 若一個電壓 v(t) 加在一個電阻器 R 兩端,並有電流 i(t) 流過 R, 若電壓之極性與電流之方向如下圖所示,   則 v(t) = Ri(t) + - v t ( ) i R 此即歐姆定律,由此式亦可得 R v t i = ( )

1-7 克希荷夫定律 (Kirchhoff’s Laws) 克希荷夫定律(KCL) in n=1 N = 0 å 進入任何節點的電流代數和為零。其數學通式為 其中 in 是進入節點的第 n 項電流,N 是進入節點的電流數目。 in n=1 N = 0 å 離開任何節點的電流代數和為零。其數學通式為 其中 in 是進入節點的第 n 項電流,N 是進入節點的電流數目。 進入任何節點的電流和 = 離開這結點的電流和。 + - i 6 1 4 2 3 a b c d 8 5 7 進入或離開任何封閉曲面(超節點)的   電流代數和為零。 = 0 + i4 i1 i2 i3

克希荷夫定律(KCL) 環繞任何環路的電壓代數和 = 零 範例 環繞任何環路上電壓升之和 = 電壓降之和。 如右圖之電路中 1. a → b 路徑中,首先遇到 + 號,故 v1 取正號。(此路徑為電壓降) 2. a → c 路徑中,首先遇到 + 號,故 v2 取正號。(此路徑為電壓降) 3. c → d 路徑中,首先遇到 + 號,故 v3 取正號。(此路徑為電壓降) 4. d → c 路徑中,首先遇到 - 號,故 v4 取負號。(此路徑為電壓升) 因此依 KVL 可得 v1+ v2 + v3 - v4 = 0 環繞任何環路上電壓升之和 = 電壓降之和。 如右圖之電路中 + - v 1 4 2 3 a b d c v4 為電壓升(自電源之負端至正端為電壓升) v3 為電壓降(自元件之正端至負端為電壓降) v2 為電壓降(自電源之正端至負端為電壓降) v1 為電壓降(自元件之正端至負端為電壓降) 因此依 KVL 可得 v4 = v1+ v2 + v3