第八章 原核细胞的基因表达调控 第六节 翻译调控 转录调控:基本上在开始阶段进行,这是为了避免不必要的转录产物的产生所需消耗的能量,不过在伸长阶段没有调控,而在结束阶段则又有调控。 基因表达的调控 初级转录产物只有在被加工后所形成的 mRNA的组成及其机能才被确定,同时 RNA的二级结构在调控中也非常重要 翻译调控也同转录调控类似
repressor mRNA (一)自身调控 1. 机制 调节因子结合部位 N N N N N N N N N N N A U G N N N N N N N N N N N N 核糖体结合部位 repressor mRNA 翻译调控在monocistron与polycistron双方都能见到,在编码蛋白合成装置组成成分的操纵子中尤为显著。操纵子是由一组结构基因协调进行转录的调控,在此基础上,在翻译的阶段也发挥了调控的作用,各个基因的表到程度会有所不同。一旦阻遏蛋白与相应蛋白的信使RNA的目的部位结合后,就失去识别核糖体的开始领域的能力
2. 主要阻遏蛋白的作用部位 阻遏蛋白 靶基因 作用部位 R17外壳蛋白 R17 replicase 核糖体结合部位的回文结构 T4 Reg A蛋白 初期T4 mRNA 翻译开始密码在内的序列 T4 DNA 聚合酶 Shine-Dalgarno序列 T4 p32 基因 32 单链5’前导序列 与细菌的基因表达有关的蛋白质大约有70种,核糖体蛋白与蛋白合成有关的辅助蛋白一起成为蛋白合成装置的主要成分,剩余的组成为RNA聚合酶的亚基及其辅助因子。核糖体蛋白,蛋白合成因子与编码RNA聚合酶亚基的基因相互混合,由少数的操纵子构成。在大肠杆菌,这些蛋白基因各自为1个拷贝。
一个顺反子的翻译需要前一个 顺反子翻译所引起的二级结构 变化来调控
3. 核糖体蛋白的主要结构 操纵子 基因与蛋白 调节因子 S7 rps L rps G fus A tuf A str S12 S7 EF-G EF-Tu S7 spc rplN rplX rplE rpsN rpsH rplF rplR rpsE rplD rpmO secY-X L14 L24 L5 S14 S8 L6 L18 S5 L30 L15 Y X S8 S10 rpsJ rplC rplB rplD rplW rplS rplV rpsC rpsQ rplP rpmC S10 L3 L2 L4 L23 S19 L22 S3 S17 L16 L29 L4 α rpsM rpsK rpsD rpoA rplQ S13 S11 S4 α L17 L1 L11 rplK rplA L11 L1 S4 rif rplJ rplL rpoB rpoC L10 L7 β β’ L10 无论哪个操纵子都是多个机能的集成。1.str操纵子是由核糖体的小亚基的构成蛋白的基因与EF-Tu,EF-G基因组成。2.spc与s10操纵子是由核糖体的小亚基与大亚基的构成蛋白的基因混合而成,3.α操纵子是由RNA聚合酶的α亚基基因和和谈体的大小亚基的构成蛋白的基因。4.rif基因内有核糖体的大亚基构成蛋白与RNA聚合酶的β与β’亚基的基因。上述六个操纵子的共同特点是基因群组合的表达式由其基因产物调控,调控蛋白编码基因本身尤其自己进行调控。
4. 核糖体蛋白操纵子的自身调控机能 rRNA r-protein rRNA被合成后,r蛋白 就与之结合 游离r蛋白不存在时, r蛋白mRNA的翻译继 续进行 rRNA的量减少后, 游离r蛋白蓄积 一个r蛋白与mRNA结 合抑制翻译
r蛋白的量对应着细胞的繁殖速度。rRNA的量的调控, 使得细胞全部的核糖体组成部分的量能够得到调控 2.由这些操纵子编码的其它蛋白质与r蛋白的翻译程度独 立,是以其固有的速度进行合成。
自身调控是限制自身合成的系统,与依存其它因 子进行调控对比,后者是阻遏蛋白和操作子的结 合能力由外来性低分子物质的浓度进行调控,但 是自身调控时,被调控蛋白的自身浓度直接影响 着该蛋白的合成。
第七节 RNA结构调控模型 RNA在外界环境因素的驱使下,或借助碱基互补配对形成多种空间结构,控制转录终止和RNA分子的降解;或通过分子间相互作用,导致其他RNA分子的灭活。 (一)终止子工作原理: 转录终止反应必须破坏RNA链与DNA链之间的所有氢键,以便DNA双螺旋结构复原。终止信号存在于已转录出的RNA序列中,即终止子结构。 本征终止子intrinsic terminator:发夹结构和大约6个U组成的尾部结构 发夹结构导致转录延缓,为最后终止创造有利条件,处于停止状态的RNA聚合酶遇到转录终止信号,即从模板链上解离下来。 ρ 因子依赖型终止子:直接识别终止位点上游50~90碱基区域,该区域含丰富的C碱基,但G碱基贫乏。 ρ 因子通常与终止子上游特异位点结合,沿RNA链向下游移动,其速度快于RNA聚合酶速度,赶上延宕的RNA聚合酶,利用其ATP酶活性,释放能量,解开DNA-RNA杂合双链, RNA聚合酶也解离下来。 RNA的构象调控有别于DNA编码序列,即有别于启动子,操作子和增强子等能直接与蛋白因子识别和作用的DNA顺式调控元件,属于另外一类DNA调控元件。发夹结构的RNA区域中含有一个回文序列,长约7-20bp,两个反向重复序列及两者之间的不配对序列分别构成发夹的茎环结构。
可变性二级结构调控衰减作用
TRAP is activated by tryptophan and binds to trp mRNA. This allows the termination hairpin to form, with the result that RNA polymerase terminates, and the genes are not expressed. In the absence of tryptophan, TRAP does not bind, and the mRNA adopts a structure that prevents the terminator hairpin from forming.
Under normal conditions (in the presence of tryptophan) transcription terminates before the anti-TRAP gene. When tryptophan is absent, uncharged tRNATrp base pairs with the anti-TRAP mRNA, preventing formation of the terminator hairpin, thus causing expression of anti-TRAP.
Termination can be controlled via changes in RNA secondary structure that are determined by ribosome movement.
The trp operon consists of five contiguous structural genes preceded by a control region that includes a promoter, operator, leader peptide coding region, and attenuator.
An attenuator controls the progression of RNA polymerase into the trp genes. RNA polymerase initiates at the promoter and then proceeds to position 90, where it pauses before proceeding to the attenuator at position 140. In the absence of tryptophan, the polymerase continues into the structural genes (trpE starts at +163). In the presence of tryptophan there is ~90% probability of termination to release the 140-base leader RNA.
Antisense RNA can be generated by reversing the orientation of a gene with respect to its promoter, and can anneal with the wild-type transcript to form duplex RNA.
A protein that binds to a single-stranded region in a target RNA could be excluded by a regulator RNA that forms a duplex in this region.
By binding to a target RNA to form a duplex region, a regulator RNA may create a site that is attacked by a nuclease.
The secondary structure formed by base pairing between two regions of the target RNA may be prevented from forming by base pairing with a regulator RNA. In this example, the ability of the 3 end of the RNA to pair with the 5 end is prevented by the regulator.