第十五章 细胞分化与胚胎发育 第一节 细胞分化 第二节 胚胎发育中的细胞分化.

Slides:



Advertisements
Similar presentations
第十一章 细胞分化 cell differentiation. 第一节 概述 多细胞有机体由各种 不同类型的细胞组成, 所有这些细胞都来自 一个受精卵。 细胞分裂增加细胞的 数量; 细胞分化增加细胞的 种类。 哺乳动物卵细胞的受精过程.
Advertisements

1 第十三章 干细胞.  干细胞的定义、特点、分类与应用  干细胞分离培养诱导分化  细胞分化:同一来源的细胞,通过细胞分裂在细胞 间产生形态结构、生化特征和生理功能有稳定性差 异的过程。  细胞分化是个体发育中组织器官形成的基础,是发 育生物学的中心问题。
第二节 生物的个体发育 一 被子植物的个体发育. 个体发育的概念 受精卵经过细胞分裂、组织分化和器官形成, 直到发育成性成熟的个体。
第 1 节、从受精卵谈起 第1节、从受精卵谈起 第三章 胚胎工程. 高等动物个体发育的阶段划分 胚胎发育 胚后发育 直接发育(爬行类、鸟类、哺乳类) 变态发育(部分两栖类、昆虫等)
第三章 第一节 从受精卵谈起 高等动物个体发育的阶段划分 指受精卵发育为幼体 卵生动物: 胎生动物: 幼体从卵膜内孵化出来 → 性成熟的个体 幼体从母体内生出来 → 性成熟的个体 阶段 划分 阶段 划分 胚胎发育 胚后发育.
上皮细胞生物学研究中心 成立以来开展的主要合作研究项目 日期 中国科学院 2002 合作单位 项目
第一章 生殖细胞(germ cells)的发生
第六章 性别决定及生殖发育 Sex determination and reproduction
龙星课程—肿瘤生物信息学上机课程 曹莎
白血病 ,俗称“血癌”,是一种恶性程度极高的血液病 ,其自然病程只有3个月。患者的血液中出现大量异常的白细胞,而正常的血细胞明显减少。通过骨髓移植可以有效的治疗白血病。此外用化疗、放疗等方法也可以遏制病变的白细胞 ,延长病人的生命。
第六章 细胞的生命历程 第2节              细胞的分化.
必修一 分子与细胞 第6章 细胞的生命历程 第2节 细胞的分化 安庆市 安庆一中 杨卫东.
? 受精卵.
第二节 细胞的分化.
第六章 细胞的生命历程 第2节 细胞的分化 人教版 生物 必修1 高一第一学期第六章 第二节
[德国] 丘索维金娜和她的儿子. [德国] 丘索维金娜和她的儿子 小资料 白血病俗称血癌,发病率为3/ ,我国每年新增约6万名患者。患者体内白细胞比实际需要的多,且多数白细胞是不成熟的幼稚细胞,存活期变长,但不能像正常白细胞那样抗感染。 急性单核细胞白血病的血象.
生物的生殖和发育.
人的生殖和发育 (人的生殖).
生物的生殖和发育.
类风湿性关节炎的中医治疗 广州中医药大学第一附属医院 陈纪藩.
一个受精卵如何变成一个孩子?.
细胞分化、衰老、凋亡和癌变.
第2讲 细胞的分化、衰老、凋亡和癌变.
第七章 干细胞 第一节 干细胞概述 第二节 胚胎干细胞的研究 第三节 成体干细胞的研究 第四节 在再生医学中的应用.
第一节 男性生殖 Male reproduction
第二节《基因在亲子代间的传递》 玉岩中学 宋靖芳.
生殖细胞.
减数分裂与生殖细胞的形成 复习课.
二、骨髓和血细胞发生(概述) 出生前造血器官 卵黄囊 肝 脾 骨髓 出生后造血器官 骨髓 ——红、粒、单、血小板 淋巴器官 ——淋巴细胞
吉林大学远程教育课件 细胞生物学 (第四十五讲) 讲课人 : 孙非 学 时:48.
Stem cells and cell engineering
三重有情、修德有愛 2003/12/24.
第十二章 淋巴细胞的抗原受体与辅助分子.
细胞核是遗传信息库.
法 师 带 观 修 互 动 答 题 法 师 答 疑. 法 师 带 观 修 互 动 答 题 法 师 答 疑.
第一节 细胞通过分裂产生新细胞.
1、环境中直接影响生物生活的各种因素叫做 。它可以分为 和 两类 。
第二十章 胚胎学绪论.
组织学与胚胎学.
陈大元 中国科学院动物研究所 生殖生物学国家重点实验室
1、这个过程要经过哪几个阶段? 2、这个过程中有哪些细胞参与? 这些细胞分别行使什么样的功能? 3、抗体又是如何发挥作用的呢?
减数分裂 制作:乌海市第十中学 史姝婉.
第三篇 组织工作.
动物发育生物学 细胞命运的决定 讲师:陈晶 QQ:
第二节 人的生殖 滕州市羊庄镇羊庄中学 甘信用.
第二节 细胞的分化 裂.
                                                                                                                                                                
第15章 细胞分化与胚胎发育.
第八章 器官发生 第一节 附肢发生 第二节 鱼类主要器官发生.
胚胎原位杂交检测基因的时空表达模式.
Metabolic biomarker signature to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis Gut, 2017, Jan (IF=14.921) 汇报人:王宁 IMI CONFIDENTIAL.
(Stem Cell Engineering)
C语言程序设计 主讲教师:陆幼利.
干细胞概述与胚胎干细胞 1 1.
相似三角形 石家庄市第十中学 刘静会 电话:
软骨与骨 Cartilage ﹠ Bone.
第十二章 细胞分化与基因表达调控 细胞分化 癌细胞 真核基因表达调控 专题:基因的表观遗传调控.
胚胎干细胞生物学特性和研究进展.
超越自然还是带来毁灭 “人造生命”令全世界不安
機械製造期末報告- 加工切削 組員:高德全4A 林威成4A 陳柏源4A
崇德小学照片 4.种类繁多的动物 桐乡市崇德小学 陈梅娟.
AD相关LncRNA调控及分析方法研究 项目成员:魏晓冉 李铁志 指导教师:张莹 2018年理学院大学生创新创业训练计划项目作品成果展示
H基因库(重链基因连锁群): --- 第14号染色体 κ基因库(κ链基因连锁群): --- 第2号染色体 λ基因库(λ链基因连锁群):
第18 讲 配合物:晶体场理论.
基因信息的传递.
BAFF在活动性SLE患者T细胞中的表达:
干细胞与组织再生.
细胞分裂 有丝分裂.
五.有丝分裂分离和重组 (一) 有丝分裂重组(mitotic recombination) 1936 Curt Stern 发现
Presentation transcript:

第十五章 细胞分化与胚胎发育 第一节 细胞分化 第二节 胚胎发育中的细胞分化

第一节 细胞分化 一、细胞分化的基本概念 二、细胞的全能性与多能干细胞 三、影响细胞分化的因素

几种生物的细胞数目与类型(表15-1)

分子杂交技术检测基因及其mRNA的表达(表15-2)

组合调控的作用机制示意图(图15-1)

黏菌繁殖过程示意图(图15-2)

造血干细胞逐级分化为各种类型的血细胞(图15-3)

诱导多能干细胞(iPS)建系过程的示意图(图15-4)

人胚胎干细胞建系的示意图(图15-5)

人类治疗性克隆与再生医学的设想(图15-6)

人的胚胎干细胞诱导分化成胰岛β细胞(图15-7)

与人胚胎干细胞的维持相关的主要信号分子及信号通路示意图(图15-8)

细胞分化与3个胚层发生的分子机制的示意图

第二节 胚胎发育中的细胞分化 一、生殖细胞的分化 二、早期胚胎发育过程中的细胞分化 三、果蝇胚胎早期发育中的细胞分化

原生殖细胞(PGC)的迁移(图15-10)

性腺细胞分化中的信号途径(图15-11)

PGC进入生殖嵴后的细胞分裂(图15-12)

生殖嵴对生殖细胞减数分裂的调控(图15-13)

神经管的形成(图15-14)

调控脊髓神经细胞增殖的信号系统(图15-15)

神经元前体细胞通过侧向抑制而特化(图15-16)

脊髓背腹分化中的信号网络(图15-17)

(图15-果蝇体节形成中的基因调控)

本章概要(一) 在个体发育中,由一种相同的细胞类型经细胞分裂后逐渐在形态、结构和功能上形成稳定性差异,产生不同的细胞类型的过程称之为细胞分化。细胞分化是基因选择性表达的结果。分化细胞所表达的基因一类称管家基因,另一类称组织特异性基因。组织特异性基因的产物不仅影响分化细胞的形态结构,而且决定细胞所执行的各自的生理功能。每种类型的分化细胞是由不同的调控蛋白以组合调控的方式,启动组织特异性基因的表达,从而实现细胞分化的调控。细胞分化程序与调控涉及诸多因素,如受精卵的不均一性、胞外信号分子的作用、细胞间的相互作用与细胞的位置效应以及细胞的记忆等。其中,信号分子的作用是调控细胞分化最主要的因素。 干细胞是机体中能进行自我更新和多向分化潜能并具有形成克隆能力的一类细胞。根据分化潜能的不同,干细胞可分为全能干细胞、多潜能干细胞、多能干细胞和单能干细胞。根据来源不同,干细胞又可以分为胚胎干细胞和成体干细胞。诱导性多潜能干细胞制备技术的建立,不仅加深了人们对细胞全能性的理解,而且极大地推动了干细胞与细胞分化的理论研究及其临床应用。 细胞分化最伟大的杰作,在于后生生物个体的形成,而后生动物的发育,是最为复杂,也是最引人入胜的生命过程。生物相对有限的基因,凭借重复而富有创造性的方式指导细胞的行为,分化并产生当今世界上多种生命体。在这个过程中,FGF、TGF-β、RA、Shh和Wnt等信号系统,按照极其相似的方式调控各种发育进程。

本章概要(二) 哺乳动物雌雄两性的分化,源于生殖腺细胞的分化。性腺原基——生殖嵴的固有分化方向是卵巢,Y染色体携带的SRY基因对性腺分化为睾丸是必需的,而Sox9则是更普遍的决定睾丸分化的基因,存在于所有脊椎动物。原生殖细胞经过长距离迁移,进入生殖嵴,它们的分化方向由性腺的分化方向决定,RA和Wnt信号通路起了决定作用,尤其是RA及其颉颃物Cyp26b1是控制减数分裂的关键因素。 脊椎动物的发育过程经过受精、卵裂、囊胚和原肠胚,形成3个胚层,脊索中胚层诱导其附近的外胚层形成神经管。神经管的形成,是微管和微丝等细胞骨架联合作用的结果。神经管形成后,一部分细胞逐渐停止分裂并迁移到外侧,神经管上皮细胞则保持分裂能力。这个过程依靠FGF、RA、Wnt、Shh和BMP信号途径的相互协调,以及神经前体细胞依靠Delta-Notch信号而形成的旁侧抑制作用。神经管细胞的背腹分化,则主要依赖于背部的BMP信号分子浓度梯度和腹侧Shh浓度梯度,而体节中胚层分泌的RA信号分子与Shh相互颉颃,对神经管中部神经元的分化至关重要。 脊椎动物胚胎发育过程中,细胞的分化命运大部分由其所处环境决定,细胞附近的组织对细胞分化发挥了巨大作用,这就是调整型发育。大部分无脊椎动物的发育则与此不同,其细胞分化命运大部分是由细胞本身所决定的,对细胞所处环境依赖较小,这称为镶嵌型发育。果蝇的发育就是典型的镶嵌型发育,母体效应基因决定了胚胎前后轴和背腹轴,并通过级联反应调控体节的形成。 随着对发育机制的深入了解,不同组织的发育进程逐渐显示出越来越多的内在共性,人们越来越了解有限的基因如何“演奏”出精彩无限的细胞分化的绚丽“乐章” 。