Isoelectric Focusing Electrophoresis,IEFE

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
实验一 血清蛋白质 醋酸纤维素薄膜电泳. 一、实验目的 1. 了解电泳的基本原理; 2. 掌握电泳分离蛋白质的原理; 3. 掌握醋酸纤维素薄膜电泳的方法。
中国. 中学政治教学网崇尚互联共享 自然医学生机健康法 食疗.
第一章 生命的物质基础 生物体中的有机化合物 上南中学 张正国. 胰岛素 C 3032 H 4816 O 872 N 780 S 8 F e 4 血红蛋白 C 1642 H 2652 O 492 N 420 S 12 牛 奶 乳蛋白 C 6 H.
氨基酸转换反应 ( 一 ) 血液中转氨酶活力的测定 一. 目的 : 了解转氨酶在代谢过程中的重要作用及其在临 床诊断中的意义, 学习转氨酶活力测定的原理和方 法。 二. 原理 : 生物体内广泛存在的氨基转换酶也称转氨酶, 能 催化 α – 氨基酸的 α – 氨基与 α – 酮基互换, 在氨基酸 的合成和分解尿素和嘌呤的合成等中间代谢过程中.
东北师范大学生物基础实验教学中心 生物化学实验——电泳技术 张丽萍 魏春雁.
分子生物学部分开发实验 植物遗传亲缘关系研究.
项目二十 生态养猪技术 梁春凤
04蛋白质 大头婴儿.
醋酸纤维薄膜电泳 聚丙烯酰胺等电聚焦电泳分离血红蛋白和细胞色素C
第八章 中国旅游文学知识.
1.5 电泳 A. SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)(P298)
鸡病防治技术 涞源职教中心.
菜豆.
药 物 分 析 实 验 实验三 典型化学药的特殊杂质 和相关物质检查.
第一节 鸡腿菇栽培技术 主讲 刘柱明.
第四章 电泳技术.
食物中主要营养物质的鉴定 汪岱华 黄耀佳 张雯婧
第三节 电泳技术 Electrophoresis
醋酸纤维薄膜电泳法分离 蛋白质.
第一章 商品 第一节 价值创造 第二节 价值量 第三节 价值函数及其性质 第四节 商品经济的基本矛盾与利己利他经济人假设.
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
龙湾中学 李晓勇 学习目标: 能根据所给溶液写出单一溶液、混合溶液中的电荷守恒关系式。
第12章 蛋白质化学 生化教研室 夏花英 8403 课程代码:22680b57e1.
电泳技术 (electrophoresis)
蛋白质组学(proteomics) 的相关技术及应用
第三节 Gas Transport in the blood 气体在血液中的运输
蛋白质的化学2 不同二级结构中不同氨基酸出现频率.
氨基酸等电点的计算和应用 郑芳芳.
仪器分析 曾 瑾 生命科学学院.
氨基酸等电点的计算和应用 郑芳芳.
第一章 半导体材料及二极管.
第8章 静电场 图为1930年E.O.劳伦斯制成的世界上第一台回旋加速器.
第4章 蛋白质的化学 主讲教师:刘琳.
医学生物化学 傅海燕 基础部生物化学与分子生物学教研室.
胚胎原位杂交检测基因的时空表达模式.
电导分析法的应用 applications of conductometry
基准物质(p382,表1) 1. 组成与化学式相符(H2C2O4·2H2O、NaCl ); 2. 纯度>99.9%; 3. 稳定(Na2CO3、CaCO3、Na2C2O4等) 4. 参与反应时没有副反应.
3.8.1 代数法计算终点误差 终点误差公式和终点误差图及其应用 3.8 酸碱滴定的终点误差
药物的跨膜转运.
医学实验技术绪论 上海交通大学医学院 樊绮诗 教授.
超越自然还是带来毁灭 “人造生命”令全世界不安
蛋白质等电点的应用 化学系化学专业2班 罗佳
3.9.1 酸碱标准溶液的配制与标定(自学) 酸碱滴定法的应用实例 混合碱的测定(双指示剂法) 3.9 酸碱滴定法的应用
实验四 蛋白质呈色反应、沉淀反应 等电点测定
第四章 缺 氧 概念:组织得不到氧气,或不能充分 利用氧气时,组织的代谢、功 能,甚至形态结构都可能发生 异常变化,这一病理过程称为 缺氧。
化学能转化为电能 温州市第十四中学 李雅.
Protein蛋白質2-Bradford定量分析
光合作用的过程 主讲:尹冬静.
函 数 连 续 的 概 念 淮南职业技术学院.
第五节 缓冲溶液pH值的计算 两种物质的性质 浓度 pH值 共轭酸碱对间的质子传递平衡 可用通式表示如下: HB+H2O ⇌ H3O++B-
一 测定气体分子速率分布的实验 实验装置 金属蒸汽 显示屏 狭缝 接抽气泵.
H基因库(重链基因连锁群): --- 第14号染色体 κ基因库(κ链基因连锁群): --- 第2号染色体 λ基因库(λ链基因连锁群):
第18 讲 配合物:晶体场理论.
利用DSC进行比热容的测定 比 热 容 测 量 案 例 2010.02 TA No.036 热分析・粘弹性测量定 ・何为比热容
分数再认识三 真假带分数的练习课.
四 电动机.
温州中学选修课程《有机化学知识拓展》 酯化反应 温州中学 曾小巍.
过氧化氢含量的测定.
LCS之自由电子激光方案 吴钢
FH实验中电子能量分布的测定 乐永康,陈亮 2008年10月7日.
细胞分裂 有丝分裂.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
§2.高斯定理(Gauss theorem) 一.电通量(electric flux) 1.定义:通过电场中某一个面的电力线条数。
第三节 水溶液的酸碱性及pH计算 一、水的质子自递反应 水的质子自递反应: 水分子是一种两性物质,它既可 给出质子,又可接受质子。于是在水
9.6.2 互补对称放大电路 1. 无输出变压器(OTL)的互补对称放大电路 +UCC
Touch Panel 导电浆料专业制造商 Touch Panel 直接接触显示器控制机器的透明开关平面板。
Presentation transcript:

Isoelectric Focusing Electrophoresis,IEFE 等 电 聚 焦 电 泳 Isoelectric Focusing Electrophoresis,IEFE

一、IEFE 定义 IEFE一种利用具有pH梯度的支持介质分离等点电不同的蛋白质的电泳技术。

各种蛋白质各自都有一个等电点,在一特殊的pH环境中,蛋白质分子呈电中性,在电场中不会迁移。 等电聚焦就是在电泳介质中放入载体两性电解质,当通以直流电时,两性电解质即形成一个由阳极到阴极逐步增加的pH梯度,在此体系中,不同的蛋白质即移动到或聚焦于其相当的等电点位置上,也就是说被聚焦于一个狭的区带中,电泳技术中的等电点聚焦也称为聚焦电泳。

二、IEFE的特点 (一)优点 1.分辨率高(精密度可达0.01pH单位), 灵敏度高(最低检出量达0.1ng)。 2.电泳区带相当狭窄。 3.重复性好。

(二)缺点 1.要求用无盐溶液,而在无盐溶液中蛋 白质可能发生沉淀。 2.样品中的成分必须停留在其pI,不适用

分辨率较不连续PAGE更高,特别适合于分离分子量相同而电荷不同的生物大分子。

三、IEFE的基本原理

蛋白质分子在不同pH下的解离状态 NH3+ NH3+ NH2 P P P COOH COO- COO- pH<pI pH=pI pH> pI

在电泳介质中放入载体两性电解质,当通入直流电时,两性电解质形成一个由正极到负极逐渐增加的pH梯度,正极附近是低pH区,负极附近是高pH区。

蛋白质分子的电聚焦过程 + pI1 pI2 pH=pI pI3 pIn - a b c + 蛋白质分子在负极端 蛋白质分子在正极端 蛋白质样品中各组分聚焦成区带 + —

在这个从正极到负极pH逐渐增加的直流电场中,当蛋白质进入这个环境,不同的蛋白质带上不同性质和数量的电荷,向着一定方向移动,迁移到与其相同的等电点位置上停留下来,即被聚焦于一个狭的区带中 ,得以分离。

进行IEFE必须具备3个条件: ①有一个在电泳条件下基本稳定、重复性良好的pH梯度 ②有一个抗对流的电泳材料,使已经分离的样品不再重新混合 ③电泳后有适当的方法来鉴定分离的区带

(一)pH梯度的建立 用多种两性电解质混合物建立稳定良好的pH梯度

1.理想的载体两性电解质(Carrier ampholytes)应具备的特征: ①分子量要小,以便与被分离大分子物质分离; ②化学性质稳定; ③各成分的pI彼此接近,并在其pI值附近有良好的缓冲能力; ④在pI处具有足够的电导,导电性均匀; ⑤两性电解质载体的数目要足够多; ⑥可溶性好; ⑦对280nm的紫外光没有或仅有很低的吸光度,不干扰样品的测定。

2.载体两性电解质的合成 本质:一系列脂肪族多氨基多羧酸同系物和异构体,具有很多既不相同又十分接近相互连接的pI值。 pH范围:pH3~10 加成反应 丙烯酸+多乙烯多胺 Ampholine(LKB) 本质:一系列脂肪族多氨基多羧酸同系物和异构体,具有很多既不相同又十分接近相互连接的pI值。 pH范围:pH3~10

3.pH梯度的形成 载体两性电解质是一系列不同分子的两性电解质的混合物,在通电后,它们各自迁移到适当位置形成一个连续的pH梯度。

pH梯度形成的过程

㈠没通电时的变化 所有的载体两性电解质分子都荷电,只是溶液中荷正电和荷负电的基团数目相等,净电荷为零。

㈡引入电场时的变化 载体两性电解质分子将向阴极或阳极迁移,带有最低等电点的分子(荷最多的负电)将最快地向阳极迁移。当它达到净电荷是零的位置时才停止。 其次一些低pI的载体两性电解质分子(荷其次多的负电)也将向阳极移动,直到它的净电荷被减少到零才停止。

㈢电泳结束后的变化 所有的载体两性电解质分子以增加pI级数的办法将分别在阳、阴极之间到达它们自己的位置而给出一个pI梯度。

电解槽中,通电后,正负两极都会发生电 极反应: 正极端反应:6H2O→O2+4H3O++4e- 负极端反应:4H2O+4e-→2H2+4OH- 在负极引起pH值的升高,在正极pH下降,另外在电极槽的正极端放的是酸性溶液,负极端放的是碱性溶液造成了在电极附近pH的急剧变化。(图a)

pH - + a

由于载体两性电解质是一系列不同分子的两性电解质的混合物所组成的,设其中某一成分为A,它的pI=pH’,当环境中的pH>pH’时,它带负电荷,朝正极移动。(图b)

pH A- pH=pH’ - + b

当环境pI<pH’时,它带正电荷,朝负极移动,直至移动到它的等点电处,在那里聚集。由于两性电解质A在它的pI处具有一定的缓冲能力,因此在它附近形成一个pH稳定区域。(图c)

pH pH=pH’ A+ - + c

同样载体两性电解质中各种两性电解质也会各自迁移到它们的等电点处,由于它们的数量足够多,各自的等电点相差很小,从而形成一个pH梯度。(图d)

pH - + d

假设在一个系统中含有极多的有适当的等电点和它的等电点处有一定的缓冲能力的两性电解质,因此形成的pH梯度将是连续平滑的。

pH梯度的选择 在测定未知蛋白时,可先采用pH3-10的载体,经初步测定后改用较窄的以提高分辨率。

(二)支持介质的选择 作用:防止扩散 抗对流 1.液体介质:蔗糖、Ficoll 2.凝胶介质:琼脂糖,葡聚糖、PAG

(三)聚焦后的检测方法

1.各种染色法 考马斯亮蓝染色 银染色 同工酶染色 专一蛋白染色 荧光标记以及免疫方法

2.扫描与定量 激光光源强度大、单色性好,所以对IEFE谱带的扫描最合适。 注意:操作程序和条件必须严格相同

3.其它检测方法 电泳转移 双相电泳 滴定曲线分析

蛋白质样品及分离容量 1、电聚焦有高的分辨力,一般样品不需提 纯,分析上可用来测定混合物中某一成 分的相对比例。 2、大量提纯蛋白质,则应预先初步提纯。 有些物质(如核酸)聚焦时会沉淀,应 预先除去。 3、蛋白质应不含盐,因盐浓度高电流大, 易发热,而且盐离子迁移至两极产生酸 碱,占据了分离的有效部位。

等电点聚焦的分离容量受下列几个因素影响: 1、聚焦后每一区带的蛋白量取决于密度梯 度所能支持的蛋白质,提高密度可以提 高分离容量; 2、容量与区带高度的平方成正比,降低电 压可使区带变宽,提高容量,但分辨率 降低,聚焦时间长,用窄的pH梯度范围 可以使区带变宽,提高分辨率。 3、分离的容量与柱的横载面成正比,用440 毫克柱时,可加粗蛋白质5克,每一区带 可达一克。

四、等点聚焦电泳的应用 1.分析分离制备蛋白质、多肽 ①区分人血清蛋白 ②测出异常免疫球蛋白 ③基因分型 ④csf中寡克隆区带的检测 2.测定pI可鉴定蛋白质、多肽 3.双相电泳中,IEFE作为第一相

参考书目 《蛋白质电泳实验技术》 科学出版社 郭尧君 《蛋白质技术手册》 科学出版社 汪家政 范敏 主编 《电泳》 科学出版社 郭尧君 《蛋白质技术手册》 科学出版社 汪家政 范敏 主编 《电泳》 科学出版社 何忠效 张树政 主编

实验 血红蛋白的等点聚焦电泳

[原理] Hb具有四条多肽链和球蛋白 (α、β、γ、δ) pI HbA α2β2 >95% 6.87 HbA2 α2δ2 2-3% 7.38 HbF α2γ2 <2% 6.98 HbA3 <6.87

HbA 正常成人血中主要的Hb成分。 HbA2 正常成人Hb中的一个次要成分,当 胎儿出生时,其浓度不到1%,以后 稍增多,在正常成人中其平均值自 2.2% 至2.6%左右,最高范围一般 不超过3.5%。

HbF 1866年发现,是胎儿和初生儿的Hb的主要成分,足月的初生婴儿血中大约有70-80%为HbF,其余为HbA。婴儿出生后不久,HbF的浓度迅速减少,同时HbA相应增多,绝大多数正常人于出生后6个月至2年后,HbF便降至成人的正常浓度,以后HbF一直存在。

[器材] 电泳仪 凝胶玻管 三角烧杯 10cm长针头

[试剂] 分离胶缓冲液 Acr-Bis TEMED、AP Ampholine 电极缓冲液(0.2%H2SO4、2%NaOH)

[操作] 1.凝胶的制备 2.电泳 3.剥胶 4.观察结果

[思考题] 1.PAGE与IEFE有何区别? 2.本实验的关键步骤是什么?