DICP SAPO-34分子筛合成实例 解决的基础问题 Si 原子是如何进入分子筛骨架的 如何控制 Si 原子在分子筛骨架中的分布 结构

Slides:



Advertisements
Similar presentations
注重实效,切实提高教学质量 ——北大化学理科基地的建设
Advertisements

室內空氣品質與建築節能之研究IAQ&POWER
SpringerMaterials for Physics Researcher
大型仪器介绍课程 小角X射线散射原理与应用 庄 文 昌 指导老师: 陈 晓.
开题报告 课题题目:含聚污水处理化学药剂 学生姓名:姚兴 指导老师:姜斌老师.
统计物理学与复杂系统 陈晓松 中国科学院理论物理研究所 兰州大学,2013年8月.
天然有机酸及活性腐植酸的家畜疾病预防和促进生长的效果(humic acid)
基于环糊精的主客体化学法制备基因载体 化学工程8班 郑响
壳聚糖基分子印迹磁性微凝胶的制备及释药特性
中国石油大学(华东)理学院PPT管理办公室 UPC EDUCATION BUREAU STATE ADMINISTRATION OF PPT
放飞梦想,扬帆起航! 2015年先进班级体评选汇报 化工研14-5班 班 级:化工研14-5班 汇报人:吴一敏 2015年10月
有机化学课程专题讲座 环蕃化学 Cyclophane Chemistry.
宇宙学的挑战 王力帆 2011年03月19日.
杨姗姗 化学一班
第13章 新催化材料 一、金属碳化物及氮化物 金属碳化物/氮化物具有类贵金属的催化性能。 1.1 金属碳化物和金属氮化物的结构
2014年研究生示范党支部汇报 支 部:理学院研13-4学生党支部 时 间:
硅藻土吸附重金屬離子研究現狀及進展 作者:朱 健 王平 羅文連 王稻遠 張烨
版權所有 翻印必究 指導教授:林克默 博士 報告學生:許博淳 報告日期: 2011/10/24. 版權所有 翻印必究 Results and discussion The crystalline peak at 33° corresponds to the diffraction of the (200)
透過成長在矽基板上的氧化緩衝層與嵌入式氧化釔分佈布拉格反射鏡去增強氮化鎵系列的uv光檢測器響應
Chaoyang University of Technology Applied Chemistry 朝陽科技大學 應用化學系
Student : Shian-yi yang Student ID:M99L0107
Thinking of Instrumentation Survivability Under Severe Accident
Catalysis in 2D Material
学 术 报 告 新型富勒烯的合成 报告人: 时间: 地点: 简历: 谢素原 教授 (厦门大学) (周三)
低表面能之自潔性塗料的發展 The development of self-cleaning coatings having low free surface energies 班級:四化四甲 姓名:李哲維 學號:
学堂讲座通知 化学系 于吉红 院士 吉林大学化学学院 分子筛多孔功能材料的定向设计与构筑 报告人: 报告题目:
郭政達 從磊晶看LED發光效率 郭政達
ITO薄膜晶体管辅助层的文献调研 姓名:刘洋 学号: 研究小组:TFT一组 薄膜晶体管与先进显示技术实验室
半导体器件原理 Principle of Semiconductor Devices
Simple Crystalline Structure compute the theoretical density
杂化材料和杂化膜简介 中国科学技术大学功能膜实验室.
昆蟲性費洛蒙 合成特定化合物 下反應 純化 鑑定 有機化學 有機實驗 有機光譜 有機合成 專題研究 儀器分析 查考文獻 流血流汗 閱讀文獻.
复杂体系中分子相互作用的NMR研究—挑战与应对
Insight into methane conversion
第8章、深度剖析方法 角分辨深度剖析 离子溅射深度剖析 磨角深度剖析 面分布状态信息.
國科會自然處業務說明 陳于高 處長
第五章 食品原料管理與保存 (Preservation/management of food materials)
Molecular Material & Biochemical Engineering Laboratory
2.聚合物在蛋白质分离中的应用 蛋白质是由氨基酸通过酰胺键连接而成的高分子,两性,存在等 电点,因其空间结构的复杂性,有亲水或疏水之分。
Review of Material Balance
Introduction to Biochemistry
国家同步辐射实验室简介 吴自玉 田扬超 王秋平
生物芯片技术 刘超 李世燕 谢宏林
Why spacecraft structure fails
第一組 林雨農 陳栢林 陳子敬 陳昶宏 吳志杰 吳佳靜 吳宇耕 吳侑儒 葉明婷 閻正剛 王婉馨 李依純
參加2006 SAE年會-與會心得報告 臺灣大學機械工程系所 黃元茂教授
塑膠材料的種類 塑膠在模具內的流動模式 流動性質的影響 溫度性質的影響
多相流搅拌器 练习 7.
第四章 晶体缺陷 1. 晶体缺陷和符号表示 2. 热缺陷和非化学整比离子晶体缺陷 3. 晶体缺陷的表征和应用.
气体分离膜干燥技术进展 Seminar 2 学生 介兴明 导师 袁 权 院 士 曹义鸣 研究员 2004/04
奈米材料科技暨尖端化工科技發表會 光電/陶瓷材料 教授研究現況.
高职申请 申 请 人:孟增 竞聘岗位:副教授 研究方向:结构优化设计及可靠性分析 设岗学科:工程力学 土木与水利工程学院
基于通航模式新型电子封装材料的关键制造技术
第9章 化学键与分子结构 主讲教师:姜凤超 1.
Reaxys Fueling Discovery – Driving Innovation
交流阻抗的量測與分析 交流阻抗 (AC Impedance) 電阻的阻抗 Z=R 電容的阻抗 電感的阻抗 Z〞 ω變大 R Z′
Design and Analysis of Experiments Final Report of Project
半導體原理及應用 (II) 陳志方 國立成功大學 電機工程學系 1/15/06.
华南师范大学生命科学学院05级技术(2)班 刘俏敏
Inter-band calibration for atmosphere
半導體專題實驗 實驗一 熱電性質與四點探針方法.
HCSA / HCSAF超高强水泥在自流平砂浆中的应用 Application of HCSA / HCSAF Binder in Self-leveling Flooring Material Alex Yin.
Composition and Surface Controlled High-Performance Catalysts
组会报告
学 术 报 告 题 目:Platinum Alloy Nanocatalyst with Manipulated Particle Composition and Morphology for Improved ORR Properties 报告人:彭振猛 助理教授 美国阿克伦大学 时.
2.4 親和層析法 Affinity chromatography
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
For increase module power efficiency.
Principle and application of optical information technology
第七章 振动和波.
Presentation transcript:

DICP SAPO-34分子筛合成实例 解决的基础问题 Si 原子是如何进入分子筛骨架的 如何控制 Si 原子在分子筛骨架中的分布 结构 & 组成 催化 性能 分子筛的 合成与制备 DICP

Al(1Si) Al(1Si) Al(3Si) Al(4Si) Higher Si/Al Stronger acidic sites

XRD spectra of as-synthesized samples DICP

Crystallization curve of SAPO-34 DICP

IR results DICP

Assignment of the IR bands in framework vibration region of the as-synthesized samples Crystalli-zation Time Structure Type Asym. Stretch Sym. T-O Bending P-O-Al (P-O-P) O-P-O Si-O P-O (Al-O) D-6 Rings PO4 (Si,Al)O4 SiO4 Channel 0h Gel 1225 1090 785 730 - 618 570 520 470 365 0.5h 1070 475 1h Crystal 1215 1100 635 530 480 380 1.5h DICP

DICP Relative content curve of template in the as-synthesized samples Influence of crystallization on the composition of solid samples DICP

31P NMR of the gel samples in the first steps of the crystallization process The stirred mixing gel of the raw sources (silica sol, pseudoboehmite, orthophosphoric acid and water) The stirred mixing gel of a. and template (TEA). The b. gel after aging (the initial state of the crystallization). DICP

27AlMAS(a), 31P MAS(b) and 29Si CP/MAS(c) NMR spectra of as-synthesized samples in the earlier stage of crystallization a b c DICP

27Al MAS NMR spectra of calcined and dehydrated samples in the earlier stage of crystallization DICP

Changes of the Al(IV), P(IV) and Si(IV) relative content (a) and relative proportion (b) of the as-synthesized samples with crystallization time (b) relative proportion DICP (a) relative content

DICP SAPO-34晶化机理模型 初始凝 胶 晶粒以 形成 Si(4Al) 方式 生长(2.5h) 晶核 (0h) (0.5h) 相对结晶度 ~80% 重排 聚合 晶粒以 Si(4Al) 方式 生长(2.5h) 初始凝 胶 (0h) 形成 晶核 (0.5h) 晶粒生长 Si 直接参与 ~80%Si 直接进入骨架 Si(nAl) n=0-4 结构形成 (26h) Si 取代P 2Si 取代 Al+P DICP

DICP 4.分子筛的基本性质 基本特点 基本性质 多孔晶体,规整孔道结构 大比表面积 结构多样性 组成多样性 高热稳定性,水热稳定性 离子交换性质 吸附性质 固体酸碱性质 DICP

DICP

DICP

DICP

DICP

DICP

DICP

DICP 5.分子筛的表征 XRD: 晶相,晶胞参数,晶体结构 电子显微镜:晶貌,组成 吸附-脱附:比表面积,孔径,孔容、 酸碱性等 红外光谱(IR):-OH;酸碱性质;骨架;表面物种 NMR:结构微环境分析;酸碱性质 热重-差热:热稳定性,酸碱性,吸附(脱附)性质,积碳分析 DICP

注意:XRD图随组成也有变化 DICP

去除模板剂前后XRD图有变化 DICP

DICP XRD测定结晶度 一般测定8个主峰即可 Sum of peak heights (unknown) Sum of peak heights (standard) % Crystalinity = 一般测定8个主峰即可 也可用于测定杂晶相对结晶度 DICP

DICP XRD测定Si/Al比 晶粒必须大于0.3微米 组成变化引起晶胞参数变化,XRD呈现规律性 可以测定Si/Al

HZSM-5 %Al=16.5-30.8 DICP

IR法测定Si/Al 组成规律变化会体现在IR光谱中 只对特定体系适用 DICP

DICP

分子筛酸性的测定 酸碱中和(指示剂法) TPD IR 1H-NMR 31P-NMR TPD和IR最常用 DICP

H-MAS-NMR spectrum of HY zeolite DICP

IR spectra of HY zeolite without and with adsorbed pyridine  HY+Pyridine (Lewis) (sodalite) (supercage) (B) DICP

Pyridine adsorption on different zeolites samples DICP P.A. Weyrich, W.F. Holderich, Appl. Catal. A 158 (1997)145.

Comparison of Various Acid Characterization Methods + + Method Acid Type Acid Location (Int./Ext.) Acid Amount Acid Strength Major Drawbacks Brønsted Lewis Titration   ─ + Accessibility TPD (Bases adsorption) + + ± Diffusion & Non-acidic adsorption IR (hydroxyls) Sample preparation 1H NMR Water adsorption 31P NMR (TMP) + (B) ─ (L) + (L) ─ (B) Volatile, Oxidization & Toxicity 31 P NMR (Phosphine Oxides) (B, L) Weaker basicity Comparison of Various Acid Characterization Methods  

NH3-TPD of H-ZSM-5 Zhao et al., J. Phys. Chem. B, 106, 4462 (2002)

1H & 27Al MAS NMR of H-ZSM-5 Spinning Rate = 5.0 kHz

Introducing the Players TMPO (Trimethylphosphine Oxide) Size ca. 0.55 nm TMP (Trimethylphosphine) Size ca. 0.55 nm TBPO (Tributylphosphine Oxide) Size ca. 0.82 nm ZSM-5 (10-MR)

Sample Preparation Procedures TMP Adsorption thermal decomposition of trimethylphosphine silver iodide complex onto the dehydrated H-ZSM-5 at 473 K TMPO (TBPO) Adsorption H-ZSM-5 dehydration 723 K; 24 h add TMPO/TBPO dissolved in CH2Cl2 under N2 glovebox Loaded Sample CH2Cl2 evacuation vessel agitated at RT; 12 h 323 K packing into MAS rotor 31P MAS NMR

Interactions Between Probe Molecules and Brønsted Acid Sites TMP / Brønsted acid site TMPO / Brønsted acid site Ionic Pair Complex Hydrogen Bonded Complex Formation of TMPH+ complex Higher Acidic Strength  O-H Bond Strength   31P Chemical Shift  (downfield) Lunsford et al., J. Am. Chem. Soc., 107, 1540 (1985) Mueller et al., J. Phys. Chem. B, 102, 2890 (1998)

31P MAS NMR (TMP/H-ZSM-5/26) Assignments -4 ppm: TMPH+/Brønsted acid sites -50 ppm: TMP/Lewis acid sites -62 ppm: Physisorbed TMP CP/MAS Decoupling Without decoupling Spinning Rate = 7 kHz L B Lunsford et al., JACS, 107, 1540 (1985) NOTE: Acid sites with different strengths cannot be differentiated !!

31P MAS NMR (TMPO/H-ZSM-5) Mobile TMPO 150 120 90 60 30 Chemical shift (ppm) HZSM-5/15 HZSM-5/26 HZSM-5/75 (Partially hydrated) * Spinning Rate = 10 kHz  TMPO can probes both internal and external acid sites  Upto five 31P resonance were observed @ 86, 75, 67, 63 and 53 ppm for TMPO/Brønsted  Increasing Si/Al  Acidic Strength   No Lewis acid sites observed  The newly observed 30 ppm peak can be ascribed due to mobile TMPO

Correlation of Results Obtained from TMPO and TBPO (a) TMPO (b) TBPO * 64 69 48 (P) 58 (P) 70 74 Spinning Rate = 10 kHz  Adsorption of TMPO and TBPO on Al-MCM-41 (Si/Al = 70; pore size = 2.54 nm) Chemical Shift (  ) c 1 ( 1- c ) 2 ( 2- c ) TMPO 39 69 (30) 64 (25) TBPO 47 74 (27) 70 (23)  Mechanism of Acid Site Formation in Al-MCM-41 ? Mueller et al., J. Phys. Chem. B, 102, 2890 (1998) Zhao et al., J. Phys. Chem. B, 106, 4462 (2002)

31P MAS NMR of Crystalline TBPO

TMPO (Internal + External) Acid Properties of H-ZSM-5 Determined by 31P MAS NMR in Conjunction with ICP TMPO (Internal + External)  (  )/ppm 86 (47) 75 (36) 67 (28) 63 (24) 53 (14) 43 (4) 30 Sample (Si/Al) H-ZSM-5/15 0.5% (--- , 0.005) 22.4% (0.165, ---) 37.5% (0.258, 0.017) 36.6% (0.242, 0.027) 3.0% (0.021, ---)  H-ZSM-5/26 6.9% (0.014, 0.010) 45.4% (0.159, ---) 22.7% (0.067, 0.012) 25.0% (0.063, 0.025) ---- H-ZSM-5/75 3.5% (0.003, 0.002) 69.8% (0.108, ---) (--- , 0.002) 26.7% (0.032, 0.009) TBPO (External) 92 (45) 75 (28) 71 (24) 54 (7) 47 10.5% 35.0% 54.5% 22.3% 25.2% 52.5% 15.4% 17.6% 67.0% (1)  refer to chemical shift difference w.r.t. crystalline TMPO (39 ppm) or TBPO (47 ppm). (2) Data in parentheses denote (Int., Ext.) acid concentrations in (0.05) mmol/g cat. (3) Assume 1:1 relation between adsorbate and Brønsted acid site. ICP probides concentrations of Al, Si and P.

31P NMR Chemical Shift Assignments for Various Catalysts Adsorbed with TMPO and TBPO

Distribution of Acid Sites for Various Catalysts

DICP 6.分子筛的催化性能 分子筛的特点 多孔晶体 组成可调变性 结构可调变性 孔道结构规整 Shape selective effect 比表面积大 High activity 组成可调变性 酸、碱性可调 离子交换性 氧化还原性能 TS-1,?.. 结构可调变性 据反应特点选择分子筛 DICP

Shape-selective effect 规整孔道结构使分子筛具有特殊的催化性能 Reactant shape selectivity Product shape selectivity Reactant shape selectivity and product shape selectivity are strongly depending on crystal size and activity Restricted transition state shape selectivity Restricted transition state shape selectivity is independent of crystal size and activity, but depends on pore and cavity diameters and on zeolite’s structures DICP

Reactant shape selectivity Product shape selectivity DICP

Reactant shape selectivity Dehydration of n- and iso-butanol on Ca-X and Ca-A DICP

Product shape selectivity C5-C11,汽油 ZSM-5 MTG CH3OH SAPO-34 C2-C4,烯烃 MTO 改性ZSM-5 CH3OH + toluene  p-xylene DICP

Liquid Phase Alkylation of Naphthalene over Large Pore Zeolites Background PEN PBN 塑料 液晶中间体 --- 中法PICS项目 DICP

T-butylation of Naphthalene with t-butanol Reaction Results reaction time = 2hs No 1-TBN DICP

Restricted transition state shape selectivity Disproportionation of dialkylbenzene over medium pore zeolite (HMd, ZSM-5) 双分子反应,形成中间过渡态需要较大的空间 The activity on various zeolites (ZSM-5, ZSM-4, Mordenite, Y) were correlated with their effective pore size. DICP

DICP 分子筛催化的液相有机反应 酸碱功能 芳烃的亲电取代反应 脂肪族化合物的亲核取代反应 缩合反应 异构化、重排 消去、加成 烷基化 酰化 卤化 脂肪族化合物的亲核取代反应 酯化 缩合反应 异构化、重排 消去、加成 DICP

分子筛催化的液相有机反应 金属功能 氧化反应 酸性-金属双功能 Cat: TS-1, ... DICP

DICP

DICP 重要的分子筛 A : (detergents, desiccation and separation) ; FAU : X (desiccation, purification, separation) and Y (separation, catalysis) ; MOR : (adsorption and catalysis) ; LTL : KL-type zeolite (catalysis: aromatization) ; MFI : Silicalite and ZSM-5 (adsorption and catalysis) ; BEA : Beta-type zeolite (catalysis: cumene) ; MTW : zeolite MCM-22 (catalysis: ethylbenzene, probably cumene ?) ; CHA : SAPO-34 (methanol to olefins or MTO process- demonstration unit ); FER : Ferrierite (skeletal isomerization of n-butenes- demonstration unit) ; AEL and/or TON : SAPO-11 and possibly ZSM-22 (improvement of pour point for petroleum cuts by straight long paraffin isomerization) ; Structures not revealed (for aromatic C8 isomerization) : one is certain (IFP) and the second is possible (UOP). DICP

7. 规整孔道介孔材料 DICP

A New Family of Mesoporous Materials M41S Mobil researchers in 1992, cationic surfactant pore size 1.5-10nm, high surface areas 1200 m2/g low hydrthermal stability, basic condition Liquid crystal template routes MCM-41 MCM-48 MCM-50 Hexagonal (p6m) lamellar Cubic Ia3d

介孔材料的形成机理 DICP 1. 层状机理: 2. 棒状机理: The mechanism for formation of FSM-16 1993年G. D. Stucky 1996年日本Inagaki: The mechanism for formation of FSM-16 pH decreasing S. B. Inagaki,CHEM SOC JPN 69, 1449(1996) A. Monnier etal. Science, 261,1299(1993) 2. 棒状机理: 1994年M. E. Davis DICP C. Chen, etal. Microporous Mater., 4,1(1995)

介孔材料的形成机理 DICP Cooperative Assembly Approach: Q. Huo etal. Nature, 368, 317(1994).

DICP microporous pore size <1.1 nm zeolites pore size 2-6 nm MCM-41 Applications: catalysis, separation, adsorption, sensor, nanodevice and fabrication of nanostructured materials advantage in the mass diffusion and transport because of their interconnecting networks Bicontinuous helix 3D cubic mesostructure Ia3d, MCM-48 DICP J. Thomas, O. Terasaki et al., Acc. Chem. Res. 2001, 34, 583-594

DICP Cubic Caged Mesoporous Silica SBA-1 low temperature synthesis,-5°C, acid synthesis, large head group surfactant, C16H33N(Et)3Br well defined morphology an epitaxial phase transformation DICP Q. Huo etal. Nature, 368, 317(1994). O. Terasaki, T. Tatsumi, JACS, 2002, 123, 12089

DICP Large Pore Cubic Caged SBA-16 XRD patterns  3D caged structure, cubic Im3m triblock copolymer with long EO chains F127, EO106PO70EO106,F108, F98, Brij 700, acid synthesis, highly ordered 110 111 8.0 nm 100 N2 sorption isotherms XRD patterns Cell parameter a = 13.3 nm Window size 2.3 nm Cavity surface Sphere diameter d = 9.5 nm XRD patterns DICP O. Terasaki, D. Zhao et al. Nature 408, 449(2000) Structure model D. Zhao, et al. J. Am. Chem. Soc. 1998, 120, 6024

DICP Mesoporous Silica MCM-48 and Carbons CMK-4 R. Ryoo et al., J. Phys. Chem. B, 103, 7743, 1999. S. Jun, S. H. Joo, R. Ryoo, et al., J. Am. Chem. Soc., 122(43); 10712-10713, 2000. S. Joo, R. Ryoo et al., Microporous Mesoporous Mater., 44-45, 153-158, 2001.

DICP Mesoporous Silica SBA-15 TEM images o block copolymer templating acidic synthesis condition large pore size (4.6 ~ 40 nm) thermally and hydrothermally stable highly ordered thick silica wall, microporous walls high surface areas ( ~ 1000 m2/g) pore volume (1.0—2.5 cm3/g) N2 sorption isotherms TEM images initial parts of  plots DICP D. Zhao, et al. J. Am. Chem. Soc. 1998, 120, 6024 XRD patterns N2 sorption isotherms S.-H. Joo, R. Ryoo, M. Jaroniec, J. Phys. Chem. B 2002, 106, 4640 D. Zhao, Science, 1998, 279, 548

Synthesis of Mesoporous Materials Surfactant + Inorganic source hydrothermal pH, media Synthetic Characters for Mesoporous Materials: 1. low temperature , -5°C~RT, <150 ° C 2. fast formation rate < 1 min 3. composition is variable, tetrahedron, octahedron 4. non-aqueous synthesis, surfactant templating 5. morphology control Structure characters: 1. non-perfect crystal, long range order (no code) 2. amorphous inorganic walls 3. weck interaction (H-bonding, ligand, van der Waals) 4. hydrothermally unstable

Synthesis Routes to Mesoporous Materials MCM-41 (p6m), MCM-48 (Ia3d), MCM-50 (L), SBA-6 (Pm3n), SBA-8 (cmm), FUD-2(Fd3m) Non-silica oxide mesostructures, e.g. W, Mo SBA-3 (p6m), SBA-1 (pm3n), SBA-2 (P63/mmc), MHS, MUX, worm-like dirordered mesopore Hexagonal , cubic mesostructures, Nb, Ta f, I+…X…H+S S= nonionic surfactant, block copolymers SBA-15 (p6m), SBA-16 (Im3m), SBA-12 (P63/mmc), SBA-11(Pm3m), FDU-1(Im3m), FDU-4, 5 SBA-13, 14 Q. Huo etal. Nature, 368, 317(1994). S.A. Bagshaw, etal. Science, 269, 1242(1995) J. Y. Ying, ANGEW CHEM INT EDIT 38, 56(1999) D. Zhao, Science, 1998, 279, 548

8. 分子筛研究的几个热点方向 DICP

DICP Sessions in 13-IZC Mineralogy of natural zeolite Zeolite nucleation and growth New methods of zeolite synthesis Isomorphous substitutions Synthesis of new materials Fundamentals of micelle templating New mesoporous molecular sieves Syntheses with non-ionic surfactants Crystal structure determination Host-guest chemistry Post-synthesis modification In-situ spectroscopy and catalysis Frameworks and acid sites Frameworks, cations, clusters Modelling and theoretical studiesA Modelling and theoretical studies B Principles of adsorption Adsorption and separation process Diffusion: fundamental approach Zeolite membranes and films Nanocomposite fundamentals and applications Advanced materials Micro- and mesoporous materials in fine chemistry New routes to hydrocarbon activation Conversion of aromatics Catalysis for oil refining Selective oxidation and sulfur resistance Confinement and physical chemistry for catalysis New approaches to catalyst preparation Environmental catalysis Environment-friendly applications of zeolites Zeolite minerals and health sciences DICP

DICP 几个热点方向 传统分子筛研究仍持续保持活力 Avelino Corma, Maria J. Diaz-Cabanas, Joaquin Martinez-Triguero, Fernando Rey & Jordi Rius,A large-cavity zeolite with wide pore indows and potential as an oil refining catalyst,Nature,514-517(418), 2002 DICP

DICP

DICP

介孔分子筛 目前仍没有能够耐受800oC长期水热处理的材料 催化应用背景之一是用于重质油的加工 DICP

规整孔道结构的碳分子筛 Zhixin Ma, Takashi Kyotani* and Akira Tomita, Preparation of a high surface area microporous carbon having the structural regularity of Y zeolite, Chem. Commun., 2000, 2365–2366 DICP

DICP 孔道规整的无机-有机复合材料 国际进展 NATURE, VOL 416, p304-307, 21 MARCH 2002 An ordered mesoporous organosilica hybrid material with a crystal-like wall structure Shinji Inagaki, Shiyou Guan, Tetsu Ohsuna, Osamu Terasaki DICP

Structural models of mesoporous benzene±silica Structural models of mesoporous benzene±silica. A, B, Images of the layered arrangement of SiO1.5-C6H4-SiO1.5 units in the walls. The structure was optimized by minimizing the three-dimensional periodic lattice using the force field COMPASS. C, D, Images of the hexagonal lattice constructed with the layered pore-wall structure. The structure was also minimized by using the force field COMPASS. Atoms are represented as a stick model. Silicon, orange; oxygen, red; carbon, white; hydrogen, yellow. DICP

DICP SCIENCE, VOL 291, p1021-1023, 9 FEBRUARY 2001 Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores Banglin Chen, M. Eddaoudi, S. T. Hyde, M. O’Keeffe, O. M. Yaghi SCIENCE, VOL 295,p469-472, 18 JANUARY 2002 Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O. M. Yaghi1 DICP

Thank you DICP