假設檢定.

Slides:



Advertisements
Similar presentations
20-Opening 統計學 授課教師:楊維寧 10Simple-R-Commands.
Advertisements

Sampling 抽樣 中央大學. 資訊管理系 范錚強 mailto: updated 11.
人群健康研究的统计方法 预防医学系 指导教师:方亚 电话:
宏 观 经 济 学 N.Gregory Mankiw 上海杉达学院.
2017/3/9 实验误差及其控制 魏敏杰 陈 杰 阮 强 王振宁 单凤平 孟繁浩 富伟能 陈 磊 中国医科大学.
我们会赞叹生命之花的绚丽和多姿,也会歌颂生命之树的烂漫和青翠,但是生命是如此脆弱……
后置定语 形容词是表示人或事物的性质、特征或属性的一类词。它在句中可以充当定语,对名词起修饰、描绘作用,还可以充当表语、宾语补足语等。形容词作定语修饰名词时,一般放在被修饰的名词之前,称作前置定语。但有时也可放在被修饰的名词之后,称作后置定语。
疯狂的励志 —献给渴望改变命运的有志者.
第六章 假设检验的基本概念.
3.1 集中趋势的度量 3.2 离散程度的度量 3.3 偏态与峰态的度量
第三章 隨機變數.
Service survey center, NBS
Euler’s method of construction of the Exponential function
Population proportion and sample proportion
型II誤差機率的計算 Calculating Type II Error Probabilities
一元线性回归(二).
SPC introduction.
What are samples?. Chapter 6 Introduction to Inferential Statistics Sampling and Sampling Designs.
第十章 兩母體之假設檢定 Inferences Based on Two-Samples:
Continuous Probability Distributions
Properties of Continuous probability distributions
Logistics 物流 昭安國際物流園區 總經理 曾玉勤.
Sampling Theory and Some Important Sampling Distributions
簡單迴歸模型的基本假設 用最小平方法(OLS-ordinary least square)找到一個迴歸式:
第11章 抽樣設計 本章的學習主題 1.抽樣的基本概念 2.抽樣的程序 3.機率抽樣 4.非機率抽樣 5.電話抽樣
製程能力分析 何正斌 教授 國立屏東科技大學工業管理學系.
LCCC 2018 Spring Festival April 28, 2018.
Chapter 7 Sampling and Sampling Distributions
Interval Estimation區間估計
第一章.
统 计 学 (第三版) 2008 作者 贾俊平 统计学.
第 3 章 敘述統計II:數值方法 Part A (3.1~3.2).
第 7 章 抽樣與抽樣分配 Part A ( ).
Workshop on Statistical Analysis
Chap 9 Testing Hypotheses and Assessing Goodness of Fit
A SMALL TRUTH TO MAKE LIFE 100%
課程七 假設檢定.
第四章 抽樣與抽樣分配 4.1 抽樣與抽樣方法 抽樣分配概論 常見的抽樣分配 中央極限定理55
统 计 学 (第三版) 2008 作者 贾俊平 统计学.
Objective Clauses (宾语从句)
Using the relativity principle, Einstein is able to derive that the energy of an object can be written as For v = c, the energy is infinite. Hence you.
Chapter 2 貨幣與支付系統. Chapter 2 貨幣與支付系統 2.1 導讀 本章涵蓋主題: 貨幣的定義 貨幣的功能 貨幣制度等.
Unit 8 Our Clothes Topic1 What a nice coat! Section D 赤峰市翁牛特旗梧桐花中学 赵亚平.
UNIT 3.
Introduction to Basic Statistics
抽樣分配 Sampling Distributions
相關統計觀念復習 Review II.
第八章 假設之檢定與信賴區間 陳順宇 教授 成功大學統計系.
Introduction to Basic Statistics
关联词 Writing.
Simple Regression (簡單迴歸分析)
Chapter 5 z-Scores.
The Bernoulli Distribution
美國亞利桑納州Eurofresh農場的晨曦
第二部分:统计推断 Chp6:统计推断概述 Chp7:非参数推断 Chp8:Bootstrap Chp9:参数推断 Chp10:假设检验
Review of Statistics.
磁共振原理的临床应用.
Parameter Estimation and Statistical Inference
名词从句(2).
第四章 常用概率分布 韩国君 教授.
品質管理與實習 : MIL-STD-105E 何正斌 國立屏東科技大學工業管理學系.
生物统计学 Biostatistics 第一章 统计数据的收集与整理
第七章 计量资料的统计分析.
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
Sun-Star第六届全国青少年英语口语大赛 全国总决赛 2015年2月 北京
獻上自己來榮耀神 Offering Ourselves To Glorify God
Unit 1 Book 8 A land of diversity
Gaussian Process Ruohua Shi Meeting
Climbing a Rock Wall 攀岩 选自《多维阅读第10级》.
Presentation transcript:

假設檢定

問題 假設檢定時要用甚麼distribution來看? Rejection region 一定在右邊嗎? 要如何 判別? Rejection region & p-value的關係

假設檢定時要用甚麼distribution來看?

Example 11.1 The manager of a department store is thinking about establishing a new billing system for the store's credit customers. She determines that the new system will be cost-effective only if the mean monthly account is more than $170. A random sample of 400 monthly accounts is drawn, for which the sample mean is $178. The manager knows that the accounts are approximately normally distributed with a standard deviation of $65. Can the manager conclude from this that the new system will be cost-effective?

In Chapter 9, we know We can generalize the mean and variance of the sampling of two dice: …to n-dice: The standard deviation of the sampling distribution is called the standard error:

Based on CLT The sampling distribution of the mean of a random sample drawn from any population is approximately normal for a sufficiently large sample size. The larger the sample size, the more closely the sampling distribution of X will resemble a normal distribution.

Hence, If the population mean = 170, and we keep getting a sample (size of 400) from this population, the sampling distribution follows normal distribution approximately and the mean = 170 and the standard deviation = 65/400^0.5 HT(假設檢定) – 先假設(母體資訊)再檢定(樣本資訊) Assume population mean = 170 (H0 is true) Sampling dist. follows normal with mean 170, and std 65/400^0.5 Get one sample from population Compare sample mean with sampling distribution Based on sample mean, we Reject H0 (if sample mean makes us to think the population mean is not 170) Do not reject H0 (if sample mean makes us believe population mean is 170)

Type I and Type II errors Type I error If population mean is really 170, the sampling dist. Mean = 170 and std. = 65/400^0.5 Since it follows normal, it is still likely to get a sample with an extreme (too large or too small) mean Type I error happens if we really get one sample from the population with mean =170 but since the sample mean is too large or too small, we mistakenly say that the population mean is not 170 (reject H0) Type II error If population mean is not 170, but the sample mean we get is close enough to 170 Hence, we say population mean is 170 (do not reject H0)

Rejection region 一定在右邊嗎? 要如判別?

我們假設都是真的,所以才可以用相關的sampling distribution The system will be cost effective if the mean account balance for all customers is greater than $170. We express this belief as our research hypothesis, that is: H1: µ > 170 (this is what we want to determine) Thus, our null hypothesis becomes: H0: µ = 170 (this specifies a single value for the parameter of interest) 這是我們關心的 我們假設都是真的,所以才可以用相關的sampling distribution

Example 11.1 Rejection region COMPUTE Example 11.1 Rejection region It seems reasonable to reject the null hypothesis in favor of the alternative if the value of the sample mean is large relative to 170, that is if > . 我們關心是否sample mean > 170, 所以若抓出來的sample mean太大,要reject, 若關心的是是否sample mean < 170, rejection region就會在左邊 α = P(Type I error) = P( reject H0 given that H0 is true) α = P( > )

Rejection region & p-value的關係

P-value是若你從這樣的一個sampling distribution下能抓到的一個樣本平均為某 一數值及以上(如果是右尾)的機率是? Rejection region是在設定的一個 下找一 個 threshold point,使得threshold point以 外的區域面積剛好是 E.g. = 0.05 , threshold point175.34 P-value是若你從這樣的一個sampling distribution下能抓到的一個樣本平均為某 一數值及以上(如果是右尾)的機率是? 隱含抓到一個樣本且平均為175.34的p-value是 0.05

P-value=0.0069