普通物理 General Physics 3 – Vectors Quantities

Slides:



Advertisements
Similar presentations
Unit 4 Finding your way Integrated skills New words and phrases: past prep. 在另一边,到另一侧 treasure n. 宝藏 turning n. 转弯处 traffic n. 交通,来往车辆 traffic lights.
Advertisements

第七课:电脑和网络. 生词 上网 vs. 网上 我上网看天气预报。 今天早上看了网上的天气预报。 正式 zhèngshì (报告,会议,纪录) 他被这所学校正式录取 大桥已经落成,日内就可以正式通车 落伍 luòw ǔ 迟到 chídào 他怕迟到,六点就起床了.
自我瞭解與自我肯定 台北市家庭照顧者關懷協會 許渝嬿 督導.
Time Objectives By the end of this chapter, you will be able to
-CHINESE TIME (中文时间): Free Response idea: 你周末做了什么?
完形填空技巧 CET4.
摘要的开头: The passage mainly tells us sth.
Euler’s method of construction of the Exponential function
Homework 4 an innovative design process model TEAM 7
九年级Unit 6 Topic 1 Section C 张秋红.
Module 5 Shopping 第2课时.
Population proportion and sample proportion
3. Motion in 2- & 3-D 二及三維運動 Vectors 向量
D. Halliday, R. Resnick, and J. Walker
非線性規劃 Nonlinear Programming
普通物理 General Physics 11 - Rotational Motion II 郭艷光Yen-Kuang Kuo
第二章 共轴球面系统的物像关系 Chapter 2: Object-image relations of coaxial spheric system.
普通物理 General Physics 27 - Circuit Theory
Fundamentals of Physics 8/e 27 - Circuit Theory
创建型设计模式.
奧黛莉赫本的美麗祕訣 A U D R E Y H P B N
Short Version : 6. Work, Energy & Power 短版: 6. 功,能和功率
Time Objectives By the end of this chapter, you will be able to
Chapter 6 – Asking for Directions II
Copyright © Cengage Learning. All rights reserved.
普通物理 General Physics 10 - Rotational Motion I
Chapter 6 – Asking for Directions II
机器人学基础 第四章 机器人动力学 Fundamentals of Robotics Ch.4 Manipulator Dynamics
普通物理 General Physics 29 - Current-Produced Magnetic Field
Short Version :. 11. Rotational Vectors & Angular Momentum 短版:. 11
Interval Estimation區間估計
子博弈完美Nash均衡 我们知道,一个博弈可以有多于一个的Nash均衡。在某些情况下,我们可以按照“子博弈完美”的要求,把不符合这个要求的均衡去掉。 扩展型博弈G的一部分g叫做一个子博弈,如果g包含某个节点和它所有的后继点,并且一个G的信息集或者和g不相交,或者整个含于g。 一个Nash均衡称为子博弈完美的,如果它在每.
Time Objectives By the end of this chapter, you will be able to
消費者偏好與效用概念.
Fundamentals of Physics 8/e 28 - Magnetic Force
普通物理 General Physics 22 - Finding the Electric Field-I
Lesson 44:Popular Sayings
Review Final Chinese 2-Chapter 6~10-1
句子成分的省略(1).
Chapter 5 Recursion.
普通物理 General Physics 21 - Coulomb's Law
Chapter 6 – Asking for Directions II
Have you read Treasure Island yet?
Mechanics Exercise Class Ⅰ
每周三交作业,作业成绩占总成绩的15%; 平时不定期的进行小测验,占总成绩的 15%;
Good Karma 善因緣 This is a nice reading, but short. Enjoy! This is what The Dalai Lama has to say for All it takes is a few seconds to read and think.
Good Karma 善業 原稿:牛Sir 配楽:懺悔經 捕頭恭製 按鍵換頁.
BORROWING SUBTRACTION WITHIN 20
Chapter 10 : Balance of Machinery
中央社新聞— <LTTC:台灣學生英語聽說提升 讀寫相對下降>
关联词 Writing.
中考英语阅读理解 完成句子命题与备考 宝鸡市教育局教研室 任军利
运动学 第一章 chapter 1 kinematices.
普通物理 施明智 阮俊人 教科書: University Physics 11th Edition By Young & Freedman.
Good Karma 善因緣 This is a nice reading, but short. Enjoy! This is what The Dalai Lama has to say for All it takes is a few seconds to read and think.
Distance Vector vs Link State
Q & A.
Summary : 3. Motion in 2- & 3-D 摘要: 3. 二及三維運動
计算机问题求解 – 论题1-5 - 数据与数据结构 2018年10月16日.
Chapter 10 Mobile IP TCP/IP Protocol Suite
Efficient Query Relaxation for Complex Relationship Search on Graph Data 李舒馨
Mechanics Exercise Class Ⅱ
Good Karma 善因緣 This is a nice reading, but short. Enjoy! This is what The Dalai Lama has to say for All it takes is a few seconds to read and think.
Fundamentals of Physics 8/e 22 - Finding the Electric Field-I
Distance Vector vs Link State Routing Protocols
怎樣把同一評估 給與在不同班級的學生 How to administer the Same assessment to students from Different classes and groups.
句子成分的省略(3).
Principle and application of optical information technology
Respect cannot be demanded, it must be earned
When using opening and closing presentation slides, use the masterbrand logo at the correct size and in the right position. This slide meets both needs.
Presentation transcript:

普通物理 General Physics 3 – Vectors Quantities 郭艷光Yen-Kuang Kuo 國立彰化師大物理系暨光電科技研究所 電子郵件: ykuo@cc.ncue.edu.tw 網頁: http://ykuo.ncue.edu.tw

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 Outline 3-1 What Is Physics? 3-2 Vectors and Scalars 3-3 Adding Vectors Geometrically 3-4 Components of Vectors 3-5 Unit Vectors 3-6 Adding Vectors by Components 3-7 Vectors and the Laws of Physics 3-8 Multiplying Vectors 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 3-1 What Is Physics? In Physics, we have parameters that can be completely described by a number and are known as “scalars”. Temperature and mass are such parameters. Other physical parameters require additional information about direction and are known as “vectors”. Examples of vectors are displacement, velocity, and acceleration. 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 3-2 Vectors and Scalars Vector: A vector has magnitude and direction. A vector that represents a displacement is called a displacement vector. All three arrows have the same magnitude and direction and thus represent the same displacement. (b) All three paths connecting the two points correspond to the same displacement vector. 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 3-2 Vectors and Scalars Scalar: It doesn’t involve a direction and doesn’t “point” in the spatial sense. Ex: Temperature, pressure, energy, mass, and time. Deal with them by the rules of ordinary algebra. A single value, with a sign, specifies a scalar. Ex: A temperature of 40℉. 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

3-3 Adding Vectors Geometrically As in the vector diagram, The net displacement of these two displacements is a single displacement from A to C. We call AC the vector sum (or resultant) of the vectors AB and BC. AC is the vector sum of the vectors AB and BC. (b) The same vectors relabeled. 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

3-3 Adding Vectors Geometrically Adding to gives the same result as adding to ; that is, 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

3-3 Adding Vectors Geometrically If we want to add vectors , , and ,we can add and first and then add their vector sum to . We can also add and first and then add that sum to . 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

3-3 Adding Vectors Geometrically 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 Example 3-1 In an orienteering class, you have the goal of moving as far (straight-line distance) from base camp as possible by making three straight-line moves. You may use the following displacements in any order: (a) , 2.0 km due east (directly toward the east); (b) , 2.0 km 30° north of east (at an angle of 30° toward the north from due east); (c) 1.0 km due west. Alternatively, you may substitute either for or for . What is the greatest distance you can be from base camp at the end of the third displacement? 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 Example 3-1 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

3-4 Components of Vectors A component of a vector is the projection of the vector on an axis. The projection of a vector on an x axis is its x component, and similarly the projection on the y axis is the y component. The process of finding the components of a vector is called resolving the vector. 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

3-4 Components of Vectors 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 Example 3-2 A small airplane leaves an airport on an overcast day and is later sighted 215 km away, in a direction making an angle of 22° east of due north. How far east and north is the airplane from the airport when sighted? Key idea: we are given the magnitude (215 km) and the angle (22° east of due north) of a vector and need to find the components of the vector. 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 Example 3-2 Solutions: 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 Example 3-3 For two decades, spelunking teams sought a connection between the Flint Ridge cave system and Mammoth Cave, which are in Kentucky. When the connection was finally discovered, the combined system was declared the world’s longest cave(more than 200 km long). The team that found the connection had to crawl, climb, and squirm through countless passages, traveling a net 2.6 km westward, 3.9 km southward, and 25 m upward. What was their displacement from start to finish? 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 Example 3-3 Key idea: we have the components of a three-dimensional vector, and we need to find the vector’s magnitude and two angles to specify the vector’s direction. 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 Example 3-3 Solution: 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 3-5 Unit Vectors A unit vector is a vector that has a magnitude of exactly 1 and points in a particular direction. It lacks both dimension and unit. Its sole purpose is to specify a direction. Right-handed coordinate system: 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 3-5 Unit Vectors The quantities and are vectors, called the vector components of . The quantities and are scalars, called the scalar components of 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

3-6 Adding Vectors by Components To add vectors and , we must (1) Resolve the vectors into their scalar components. (2) Combine these scalar components , axis by axis, to get the components of the sum . (3) Combine the components of to get itself. 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

3-6 Adding Vectors by Components 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

3-6 Adding Vectors by Components Subtracting Vectors by Components x O y 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 Example 3-4 Figure shows the following three vectors: What is their vector sum , which is also shown? 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 Example 3-4 Solutions: 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 Example 3-5 According to experiments, the desert ant shown in the chapter opening photograph keeps track of its movements along a mental coordinate system. When it wants to return to its home nest, it effectively sums its displacements along the axes of the system to calculate a vector that points directly home. As an example of the calculation, let’s consider an ant making five runs of 6.0 cm each on an xy 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 Example 3-5 coordinate system, in the directions shown in Fig. 3-17a, starting from home. At the end of the fifth run, what are the magnitude and angle of the ant’s net displacement vector , and what are those of the home-ward vector that extends from the ant’s final position back to home? 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 Example 3-5 Key idea: (1) Find the net displacement . (2) Evaluate this sum for the x components alone. (3) We construct from its x and y components. 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 Example 3-5 Solutions: A search path of five runs. (b) The x and y components of . (c) Vector points the way to the home nest. 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 Example 3-5 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 Example 3-5 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 Example 3-6 Here is a problem involving vector addition that cannot be solver directly on a vector-capable calculator, using the vector notation of the calculator. A fellow camper is to walk away from you in a straight line (vector ), turn, walk in a second straight line (vector ) and then stop. How far must you walk in a straight line (vector ) to reach her? The three vectors are related by 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 Example 3-6 has a magnitude of 22.0 m and is directed at an angle of -47.0° (clockwise) from the positive direction of an x axis. has a magnitude of 17.0 m and is directed counterclockwise from the positive direction of the x axis by angle . is in the positive direction of the x axis. What is the magnitude of ? 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 Example 3-6 Solutions: 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 Example 3-6 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

3-7 Vectors and the Laws of Physics The point is that we have great freedom in choosing a coordinate system, because the relations among vectors do not depend on the location of the origin of the coordinate system or on the orientation of the axes. This is also true of the relations of physics; they are all independent of the choice of coordinate system. 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 3-8 Multiplying Vectors Multiplying a Vector by a Scalar: If we multiply a vector by a scalar s, we get a new vector. Magnitude of new vector is the product of the magnitude of and the absolute value of s. 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 3-8 Multiplying Vectors Direction of new vector is the direction of . Multiplying a Vector by a Vector : There are two ways to multiply a vector by a vector: one way produces a scalar (called the scalar product ), and the other produces a new vector (called the vector product ). 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 3-8 Multiplying Vectors The Scalar product of two Vectors: The scalar product of the vectors and is written as and defined to be 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 3-8 Multiplying Vectors There are only scalars on the right side of equation. is also known as the dot product and is spoken as “a dot b.” A dot product can be regarded as the product of two quantities: (1) The magnitude of one of the vectors. (2) The scalar component of the second vector along the direction of the first vector. 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 3-8 Multiplying Vectors The commutative law applies to a scalar product, so we can write Two vectors are in unit-vector notation, we write their dot product as 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 3-8 Multiplying Vectors The Vector product of two Vectors: The vector product of and , written , produces a third vector whose magnitude is is also known as the cross product, and in speech it is “a cross b.” The direction of is decided by right-hand rule. 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 3-8 Multiplying Vectors The sense of the vector is given by the right hand rule: (1)Place the vector and tail to tail. (2)Rotate in the plane P along the shortest angle so that it coincides with . 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 3-8 Multiplying Vectors (3)Rotate the fingers of the right hand in the same direction. (4)The thumb of the right hand gives the sense of . The vector product of two vectors is also known as the “cross” product. 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 3-8 Multiplying Vectors 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 Example 3-7 What is the angle between and ? (Caution: Although many of the following steps can be bypassed with a vector-capable calculator, you will learn more about scalar products if, at least here, you use these steps. ) 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 Example 3-7 Solutions: 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 Example 3-8 Vector lies in the xy plane, has a magnitude of 18 units, and points in a direction 250° from the positive direction of the +x axis. Also, vector has a magnitude of 12 units and points along the positive direction of the +z axis. What is the vector product ? 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 Example 3-8 Solutions: From the magnitude we write is at an angle of 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 Example 3-9 If and , what is ? Solutions: 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授

普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授 End of chapter 3! 2018/9/20 普通物理講義-3 / 國立彰化師範大學物理系/ 郭艷光教授