Chapter 11 Orthogonal Functions and Fourier Series 複習: linear algebra 關於 orthogonal (正交) basis 的介紹 在 linear algebra 當中 (1) inner product (2) orthogonal (3) 若 f1, f2, …., fN 為 complete orthogonal set, where
例如 在只有三個 entry 的情形下 是一組 complete orthogonal set f3 f2 f1 問題:在 continuous 當中該如何定義 orthogonal?
Section 11.1 Orthogonal Functions 11.1.1 綱要:熟悉幾個重要定義 (7) normalize (pp. 604) (1) inner product (pp. 597) (8) complete (pp. 605) (2) orthogonal (pp. 599) (9) orthogonal series expansion (pp. 606) (3) orthogonal set (pp. 600) (10) generalized Fourier series (pp. 606) (4) square norm (pp. 602) (11) weight function (pp. 608) (5) norm (pp. 602) With weighting functions, many definition s are changed. (6) orthonormal set (pp. 602) 學習方式:(1) 可以多和 linear algebra 當中的定義多比較 (2) 複習三角函式的公式 (see pp. 611-612)
11.1.2 定義 (1) inner product on an interval [a, b] (f1, f2 為 real 時) 11.1.2 定義 (1) inner product on an interval [a, b] (f1, f2 為 real 時) 比較: discrete case 補充:more standard definition for inner product with conjugation
Inner product 性質 (a) (f1, f2) = (f2, f1)* *: conjugation (b) (k f1, f2) = k (f1, f2), k 為 scalar (或稱為constant) (c) (f, f) = 0 if and only if f = 0, (f, f) > 0 if and only if f 0, (d) (f1 + f2 , g) = (f1, g) + (f2 , g) discrete case 亦有這些性質
(2) orthogonal on an interval [a, b] (f1, f2 為 real 時) (more standard definition) 或 比較: discrete case 例子: 當 [a, b] = [-1, 1], 1 和 xk (k 為奇數) 互為 orthogonal 注意:任何 even function 和任何 odd function 在 [-a, a] 之間必為 orthogonal, 包括 Example 1 (text page 426) 的 x2 和 x3 在 [-1, 1] 之間也是 orthogonal
(3) orthogonal set 有一組 functions 0(x), 1(x), 2(x), 3(x), ……….. 若 for any m n 則 0(x), 1(x), 2(x), 3(x), ……….. 被稱作 orthogonal set on an interval [a, b]
Example 2 (text page 426) Show that the set {1, cosx, cos2x, cos3x, …..} is an orthogonal set on the interval [−, ] when one of the functions is 1 when both the two functions are not 1
(4) square norm 比較: discrete case (5) norm (6) orthonormal set 對一個 orthogonal set, 若更進一步的滿足 for all n 則被稱為 orthonormal set
Example 3 (text page 427) Calculate the norms of {1, cosx, cos2x, cos3x, …..} 運用三角函式公式 {1, cosx, cos2x, cos3x, …..} normalization as a orthonormal set
(7) normalize 將 norm 變為 1 (x) 注意,此時 可藉由 normalization, 將 orthogonal set 變成 orthonormal set
(8) complete 若在 interval [a, b] 之間,任何一個 function f(x) 都可以表示成 0(x), 1(x), 2(x), 3(x), ………..的 linear combination 則 0(x), 1(x), 2(x), 3(x), ……….. 被稱作 complete 比較:在 linear algebra 當中,對 3-D vector 而言 e1 = [1, 0, 0], e2 = [0, 1, 0], e3 = [0, 0, 1] 為 complete Any 3-D vector [a, b, c] can be expressed as ae1 + be2 + ce3
(9)(10) 若 0(x), 1(x), 2(x), 3(x), ………..為complete 可將 f(x) 表示成 被稱作 (9) orthogonal series expansion 當 0(x), 1(x), 2(x), 3(x), ……….. 不為 orthogonal, cn 不易算 當 0(x), 1(x), 2(x), 3(x), ……….. 為 orthogonal cn 被稱作 (10) generalized Fourier series
當 0(x), 1(x), 2(x), 3(x), ……….. 為 orthonormal
11.1.3 Orthogonal with Weight Function (11) inner product with weight function 其中 w(x) 被稱作 weight function 加上了 weight function 後 (11-1) orthogonal 的定義改成 for m n (11-2) square norm 的定義改成
(11-3) norm 的定義改成 (11-4) orthonormal 的定義改成 for m n (11-5) normalize 的算法改成
(11-6) orthogonal series expansion of f(x) 以及 generalize Fourier series 的算法改成
11.1.4 三角函數表 (要複習) cos(a + b) cosa cosb − sina sinb sin(a + b) 11.1.4 三角函數表 (要複習) cos(a + b) cosa cosb − sina sinb sin(a + b) sina cosb + cosa sinb cos(a − b) cosa cosb + sina sinb sin(a − b) sina cosb − cosa sinb cosa cosb [cos(a + b) + cos(a − b)]/2 sina sinb [cos(a − b) − cos(a + b)]/2 sina cosb [sin(a + b) + sin(a − b)]/2
cos(2a) cos2a − sin2a or 1 − 2sin2a or 2cos2a − 1 sin(2a) 2sin a cos a cos2a [cos(2a) + 1]/2 sin2a [1 − cos(2a)]/2
11.1.5 Section 11.1 需要注意的地方 (1) Norm 和 square of norm 要分清楚 做 normalization 時,要除以 norm (2) 熟悉三角函數的公式 (i) 記住幾個,其他的就不難推算出來 (ii) 許多公式可以由 導出來
複習: Legendre polynomials 是一種 orthogonal set if m n 其他常用的 orthogonal set Hermite polynomials (with weight function) (補充) Chebyshev polynomials (with weight function) (補充) Cosine series Sine series Fourier series
Section 11.2 Fourier Series 11.2.1 綱要 trigonometric functions orthogonal set on the interval of [p , p] be proved on pages 620~622 週期: 頻率:
(2) Fourier Series (紅色部分特別注意,勿記錯公式)
(3) 名詞 trigonometric function (page 620) Fourier series (trigonometric series) (page 624) Fourier coefficients (page 624) fundamental period (page 629) period extension (page 629) partial sum (page 631)
Fourier Series == 對信號做頻率分析 物理意義: Fourier Series == 對信號做頻率分析
「頻率」 (frequency) 是個常用字,以 Hz (每秒多少個週期)為單位 廣播 (AM): 5×105 ~ 1.6×106 Hz 廣播 (FM): 8.8×107 ~ 1.08×108 Hz 無線電視: 7.6×107 ~ 8.8×107, 1.74×108 ~ 2.16×108 Hz 行動通訊: 5.1×108 Hz ~ 2.75 ×1011 Hz 可見光: 4×1014 Hz ~ 8 ×1014 Hz 測量頻率的方式: Fourier series Fourier transform
11.2.2 Trigonometric Functions Trigonometric functions is orthogonal on the interval of [p , p] 要用 + 2 = 5 次的inner products 來證明 (1) 1 VS. Cosine (2) 1 VS. Sine
(3) Cosine VS. Sine (when h k) when (h = k)
(4) Cosine VS. Cosine, k h when h k (5) Sine VS. Sine, k h when h k
Square norms of trigonometric functions
11.2.3 Fourier Series The Fourier series is the orthogonal series expansion (see page 606) by trigonometric functions (Fourier series又被稱作 trigonometric series) The Fourier Series of a function f(x) defined on the interval [p, p] a0, an, bn 被稱作 Fourier coefficients
Example 1 (text page 433)
p =
11.2.4 Conditions for Convergence 其實未必成立 If (1) f1(x0) = f(x0) if f(x) is continuous at x0
(2) if f(x) is not continuous at x0 Example 1 的例子 Fig. 11-2-1
11.2.5 Period Extension fundamental period: 2p 在 interval x [p, p] 以外的地方 (period Extension) f1(x) 是個週期為 2p 的 函式 (這是 f1(x) 和 f(x) 第二個不同的地方
Example 1 的例子 Fig. 11.2.2 對一個非週期的函式,Fourier series expansion 的結果不適用於 x [p, p] 的區域 但是週期函式則可
11.2.6 Sequence of Partial Sums N 越大,越能逼近原來的 function
(a) S3(x) (b) S8(x) Fig. 11.2.3
(c) S15(x) Fig. 11.2.3 N = 15
11.2.7 Section 11.2 需要注意的地方 (1) Fourier series 的公式 (常背錯) (a) 第一項是 a0/2,而非 a0 (b) 算 a0, an, bn 時,積分後別忘了除以 p (p 是 interval width 的一半) (2) 背熟三角函式公式 (3) 熟悉 (在計算 Fourier coefficients 會常用到,如 Example 1)
(4) 當 n 為整數時, 習慣這種表示法 (5) 正確而言, 近似於 因為當 f1(x) 和 f(x) 之間有二個不同的地方 (a) 在 discontinuous 的地方 (b) f1(x) 為 periodic, f1(x) = f1(x + p) 然而,習慣上,還是寫成
數學史上最美麗的詩篇 --- 傅立葉級數 Clerk Maxwell 悲傷的傅立葉
Section 11.3 Fourier Cosine and Sine Series 11.3.1 綱要 f(x) is even (1) Fourier cosine series (或 cosine series) Fourier Series 比較 page 637 和 page 616 Fourier sine series (或 sine series) f(x) is odd
(2) 重要名詞: Fourier cosine series, cosine series (page 643) Fourier sine series, sine series (page 644) Gibb’s Phenomenon (page 647) (3) Half-range extension: [0, L] (a) cosine series: f(x) = f(−x), interval is changed into [−L, L], set p = L (b) sine series: f(x) = −f(−x), interval is changed into [−L, L ], set p = L (c) Fourier series: (i) interval [−p, p] is replaced by [0, L], (ii) p is replaced by L/2 (4) One of the applications: Solving particular solution (See page 657)
11.3.2 Even and Odd Functions even function: f(x) = f(x) odd function: f(x) = f(x) Example 1, x2, x4, x6, x8 ….. are even x, x3, x5, x7, x9….. are odd
Sine functions are odd Cosine functions are even sin(t) cos(t)
Several properties about even and odd functions (a) The product of two even functions is even 例: x2 x4 = x6 (b) The product of two odd functions is even 例: x x = x2 (c) The product of an even function and an odd function is odd 例: x x2 = x3 (d) The sum (or difference) of two even function is still even (e) The sum (or difference) of two odd function is still odd
(f) If f(x) is even, then (g) If f(x) is odd, then (Proof): (令 x1 = −x, dx1 = −dx) When f(x) = f(−x) When f(x) = − f(−x)
11.3.3 Fourier Cosine and Sine Series (1) The Fourier series of an even function on the interval (−p, p) is the cosine series (或稱作 Fourier cosine series) 和之前 Fourier series 不一樣的地方有三個 適用情形: (1) f(x) is even (2) Half range extension (page 649)
(2) The Fourier series of an odd function on the interval (−p, p) is the sine series (或稱作 Fourier sine series) 和之前 Fourier series 不一樣的地方有三個 (是哪三個) 適用情形: (1) f(x) is odd (2) Half range extension (page 649)
Example 1 (text page 438) Expand f(x) = x, 2 < x < 2 in a Fourier series f(x) is odd expand f(x) by a Fourier sine series Fig. 11.3.3
Example 2 (text page 438) odd function, 使用 sine series Fig. 11.3.5
11.3.4 Gibbs Phenomenon Example 2 的結果 partial sum 當 N 不為無限大,在 discontinuities 附近會有 “overshooting” “overshooting” 的大小不會隨著 N 而變小 但寬度會越來越窄,越來越靠近 discontinuities 的地方 這種現象,稱作 Gibb’s phenomenon
(a) S1(x) (b) S2(x) (c) S3(x) (d) S15(x) Fig. 11.3.6
11.3.5 Half Range Extension 之前的例子: f(x) is defined in the interval of −p < x < p 若問題改成 Expand f(x), 0 < x < L (f(x) 只有在 0 < x < L 當中有定義) (a) In a cosine series (i) Interval: [−L, L], (ii) 所有公式的 p 由 L 取代, (iii) 結果是 even (b) in a sine series (i) Interval: [−L, L], (ii) 所有公式的 p 由 L 取代 , (iii) 結果是 odd (c) in a Fourier series (i) Interval: [0, L], (ii) 所有公式的 p 由 L/2 取代
如 Example 3 (text page 440), f(x) = x2, 0 < x < L (a) in a cosine series 假設 f(x) = f(x) for −L < x < 0, (假設 f(x) 是一個 even function) interval變為 (L, L) 原本 cosine series 公式 現在只不過將 p 改成 L
(b) in a sine series 假設 f(x) = f(x) for −L < x < 0, (假設 f(x) 是一個 odd function) interval 變為 (L, L) 原本 sine series 公式 現在只不過將 p 改成 L
(c) in a Fourier series interval 仍為 (0, L) 原本 Fourier series 公式 現在 (1) 將 interval [−p, p] 換為 [0, L], (2) 將 p 換為 L/2
Example 3, f(x) = x2, 0 < x < L 將三個方法的結果畫成圖形 cosine series sine series
Fourier series
11.3.6 Solving Particular Solutions (第四個方法) 方法的限制 (註:以下的步驟不包含解 homogeneous solution homogeneous solution 還是需要用 Section 4-3 的方法來解) (Step 1) 將 f(t) 表示成 Fourier series 或 cosine series (當 f(t) 為 even) 或 sine series (當 f(t) 為 odd)
(Step 2) 假設 particular solution 的型態為 代回原式,比較係數,將 A0, An, Bn 解出來 若所假設的 particular solution 和 homogeneous solution 有相同的地方,則要乘上 t
Example 4 (text page 441) (相關物理定理請複習 Section 5.1) for 1 < t < 1 Step 1 假設 (因為 f(t) 是 odd)
Step 2 假設 particular solution 為 (p = 1) 思考:為什麼這裡可以沒有常數項 A0?
Step 3 將 xp(t) 和 Step 1 的結果代入 Therefore, the particular solution is:
General solution: 注意:由於 當中並沒有一次,三次,五次….微分項,所以 particular solution 不可能會有 cosine terms 所以,在 Step 2 當中,可以直接假設
11.3.7 Section 11.3 需要注意的地方 (1) 公式一些地方易記錯 for cosine series and sine series, (2) Fourier series 的 half-range extension 和 cosine series 及 sine series 不同 p is replaced by L/2, [−p, p] is replaced by [0, L] (3) Half range extension 和 solving particular solution 這兩個部分較複雜,需要特別注意,並且多練習例題
Exercise for Practice Section 11-1 3, 5, 6, 8, 13, 14, 17, 19, 20, 21, 22, 23 Section 11-2 2, 5, 9, 10, 12, 16, 19, 22, 23, 24 Section 11-3 14, 16, 18, 21, 22, 23, 28, 29, 33, 36, 37, 43, 46, 47a, 48a, 49, 52 Review 11 6, 12, 13, 14, 15, 17, 18