Chapter 3 Metabolism of Carbohydrate

Slides:



Advertisements
Similar presentations
Chapter3 Enzyme 许爱娱 级生物技术一班. Protein Enzymes RNA All enzymes are proteins except some RNAs and not all proteins are enzymes.
Advertisements

Determination of carbohydrates
第三章 酶 第一节 酶的概念及特点 Enzyme.
CH27 Metabolic Integration and Organ Specialization
THE HUMAN PERSPECTIVE 人类展望
人体代谢与疾病 , Metabolism in human body and Diseases 生物化学与分子生物学教研室 吴耀生教授 ,
药 物 化 学 Medicinal Chemistry 主编 仉文升 李文良 高等教育出版社.
第一章 运动的能量代谢 第一节 生物能量学概要 第二节 运动状态下的能量代谢.
慢性鼻竇炎病人趨化激素RANTES, Eotaxin與疾病嚴重度的相關性
代謝(Metabolism) Metabolism, the sum of all of the enzyme-catalyzed reactions in a living organisms, is highly coordinated and purposeful cell activity.
壯筋續骨湯對骨細胞活性之影響 壯筋續骨湯為一種常用於促進骨折癒合之中藥複方,當中包括17種中藥材。根據傳統之中醫理論,這些組成物具有補腎強精、促進血液循環、幫助胃腸道吸收等功能。而在本實驗中擬藉由骨細胞培養之模式,探討此一複方對骨形成作用和骨吸收作用之影響,並以各種生化分析之方法來印證其作用機制。 中藥複方經水煮萃取,將之濃縮乾燥,針對此一初萃產物進行各項活性分析。並進一步以乙酸乙酯.
第六章 酵素 除了少數具催化活性的RNA酵素「稱核糖酶(Ribozyme)」外,酵素幾乎全是蛋白質。
第九章 糖 代 谢 (Carbohydrate metabolism).
The Structure and Function of Large Biological Molecules
生物電化學短講 生物體能量 呼吸作用 生物電子傳遞系 糖與醣 葡萄糖 糖解作用 檸檬酸循環(TCA cycle) 電子傳遞鏈 傳導概論
武汉职业技术学院 微生物技术应用 背景知识四:微生物生长测定技术.
氨基酸代谢 Amino Acid Metabolism 蛋白质的营养作用 蛋白质的消化吸收 氨基酸的分解代谢.
CH14 糖解反應、糖質新生作用,以及五碳醣磷酸路徑
糖代谢中的其它途径.
分析 [第五版] 化學 Chemical Exploring Analysis [5E] 原著 Daniel C. Harris
第九章 脂 类 代 谢 Metabolism of Lipids.
氨基酸代谢 Metabolism of Amino Acids
Chapter 1 Introduction 绪论.
第二篇 发酵机制 发酵机制:微生物通过其代谢活动,利用基质(底物)合成人们所需要的代谢产物的内在规律 积累的产物 微生物菌体 酶 厌气发酵:
第五章 糖代谢 Metabolism of Glucose
碳水化合物的营养与供给.
Chapter 13 α-Substitution and Condensations of Enols and Enolate
第十章 酶的作用机制和酶的调节.
第五章 微生物的代谢与调节 新陈代谢: 生物体进行的所有化学反应和物理反应的总和。 微生物的代谢作用包括:
15.4 動物體內肝醣的代謝 由肝醣磷酸化酶催化的反應如下:在肝醣非還原端的兩個葡萄糖殘基之(α1→4)糖苷鍵鍵結被無機磷酸鹽(Pi)攻擊,而移除尾端的葡萄糖殘基形成 α-D-葡萄糖 1-磷酸(α-D-glucose 1-phosphate)(圖 15-25)。 p.633.
生 物 氧 化 Biological Oxidation
酵母双杂交系统 Yeast Two-hybrid System(interaction trap)
第八章 糖代谢 glycolysis ● from the Greek glyk-, sweet, and lysis, splitting.
Chapter 3. vitamin Lipid-soluble vitamin Water- soluble vitamin.
生化Ch21 partIII 重點整理 生科2A 0993B013許嘉珊 0993B035張以潔.
Ch19 The TCA Cycle 第十六組 B983B0043 陳佩怡 B983B0038 黃祺桂.
細菌的代謝 metabolism Usually, bacteria produce extracellular enzymes to degrade (or digest) surrounding nutrient molecules into small molecules for importing.
Chapter 3 Metabolisms of Carbohydrates
Metabolism of Carbohydrates
第23章 糖异生和其他代谢路径 由非糖物质转变为葡萄糖或糖原的过程称为糖异生(gluconeogenesis)。
生 物 氧 化 Biological Oxidation
第 五 章 酶 Enzyme.
Interrelationships & Regulations of Metabolism
细菌双组分调节系统 Two-Component Regulatory System
生物催化師 活動內容版權屬香港青年協會擁有©2015.
Major Metabolic Pathway Glycolysis Mitochondria
第 八 章 核 苷 酸 代 谢 Metabolism of Nucleotides.
主页: 骆严 Yan LUO 主页: 手机: 浙江大学基础医学院 浙江大学肿瘤研究所.
實驗1 Streaking isolation of bacteria 細菌劃線分離
Degradation of nucleic acid & metabolism of nucleotides
第24章 糖原的合成与分解 血 糖 血液中的葡萄糖含量称为血糖。按真糖法测定,正常空腹血糖浓度为3.89~6.11mmol/L(70~100mg%)。
第五章 糖代谢 Metabolism of saccharide 第五章糖类分解代谢和第七章糖的生物合成.
數種代謝物是糖質新生的先驅物,3種重要的受質描述如下:
EGF与细胞信号传导 Signal Transduction
Li Zhou Nov 18th, 2017.
第4章 生物能学与生物氧化 (bioenergetic and Biological Oxidation)
Chapter 5 Enantiomerism
CHAPTER 7 MITOCHONDRION AND PEROXISOM.
第九章 物质代谢的联系与调节 Interrelationships & Regulations of Metabolism
第十章 Bioenergetics: How Do Organisms Acquire and Use Energy 前言.
生化報告 13組 0993B004 朱珮萱 0993B017 曾馨卉.
华南师范大学生命科学学院05级技术(2)班 刘俏敏
Chapter review part 2 第14組 吳雅蘭 鄞偈芸.
生化Ch21 partIII 重點整理 生科2A 0993B013許嘉珊 0993B035張以潔.
18-3 課堂整理 第十五組 0993B010 張維哲 0993B042 游博雄.
Lipid Metabolism & Hyperlipidemic Syndrome
Chapter review part 2 第14組 吳雅蘭 鄞偈芸.
生物催化剂 酶(Enzyme).
Adviser: Jya-Wei Cheng Speaker : Li-Chun Chen ( )
Chapter 6 Metabolism of Carbohydrates
Presentation transcript:

Chapter 3 Metabolism of Carbohydrate 生物化学 Chapter 3 Metabolism of Carbohydrate

Section 1 Digestion and uptaking of carbohydrate 第一节 糖的消化与吸收

1.1 糖类水解酶 多糖水解酶 糖苷水解酶 淀粉酶 纤维素酶 半纤维素酶 果胶酶 麦芽糖酶 蔗糖酶 乳糖酶 ●●● a-淀粉酶 b-淀粉酶 葡萄糖淀粉酶 纤维素酶 多糖水解酶 异淀粉酶 半纤维素酶 果胶酶 麦芽糖酶 蔗糖酶 糖苷水解酶 乳糖酶 ●●●

1.2 糖类在人体中的消化 吸收 第一阶段 第二阶段 糖类食物 唾液淀粉酶 咀嚼、部分水解 有限水解 HCl 胰淀粉酶 a-糊精、麦芽糖和少量葡萄糖 第二阶段 单糖 糖苷酶 吸收

1.3 糖的吸收 糖的吸收就是指游离的葡萄糖(单糖)进入到生物体内(细胞内)的过程。 主动运输 促进扩散 糖的吸收方式 基团转位

血糖的来源、去向 血糖 80-120 mg/100 ml 40-70, 120-180 低 高 Glucose is very soluble source of quick and ready energy. It is a relatively stable and easily transported. Glucose is the only source of energy in red blood cells

Section 2 Catabolism of monocarbohydrate 第二节 单糖的分解代谢 Glycolysis and Gluconeogenesis Glycolysis- Derived from the Greek stem glyk-,”sweet”, and the word lysis, “dissolution”.

2.1 Concepts 酵解(glycolysis): 是酶将葡萄糖降解成丙酮酸并伴随着生成ATP的过程。它是动物、植物、微生物细胞中葡萄糖分解产生能量的共同代谢途径。 发酵(fermentation):厌氧有机体把酵解生成的NADH中的氢交给丙酮酸,生成乳酸;或丙酮酸脱羧生成的乙醛,生成乙醇。 发酵类型(types of fermentation)。 呼吸(respiration)

Glycolysis The cell is the functional unit of organisms. All metabolic activity is based on cells

2.2 Glycolysis and the Catabolism of Hexoses —— EMP pathway Embden-Meyerhof-Parnas pathway 2.2.1 The Elucidation of Glucose Degradation Pathway Has a Rich History 1890s, Buchner (Germany), fermentation occurred outside living yeast cells (the “sucrose surprise”): metabolism became chemistry; The Nobel Prize in Chemistry 1907 for his biochemical researches and his discovery of cell-free fermentation

2.2.1 The Elucidation of Glucose Degradation Pathway Has a Rich History 1910s to 30s, Embden and Meyerhof (Germany), glycolysis in muscle and its extracts: in vitro reconstruction from glycogen to lactic acid; many reactions of lactic acid (muscle) and alcohol (yeast) fermentations are the same; lactic acid is reconverted to carbohydrate in the presence of O2; some phosphorylated compounds are energy-rich. “Embden-Meyerhof pathway”. 埃姆登- The Nobel Prize in Physiology or Medicine 1922 for his discovery of the fixed relationship between the consumption of oxygen and the metabolism of lactic acid in the muscle 梅耶霍夫 Otto Meyerhof

2.2.1 The Elucidation of Glucose Degradation Pathway Has a Rich History 1940s, Lipmann, discovery of Coenzyme A and acetyl-CoA; 1930s to 40s, Carl Cori and Gerty Cori, discovery of glycogen phosphorylase (磷酸化酶)and glucose-1-phosphate; 1940s, Cori, Cori and Houssay, discovery of hormone (激素) regulation of metabolism; The whole pathway of glycolysis (Glucose to pyruvate) was elucidated by the 1940s.

2.2.2 Overview of glycolysis 糖酵解概况 The glycolysis is a pathway from glucose to pyruvate; 葡萄糖 Yeast 丙酮酸 Exercising muscle The fate of glucose is varies with physiological conditions, tissues, and organisms. Anaerobic conditions Aerobic conditions

2.2.2 Overview of glycolysis 糖酵解概况 2. Glycolysis can occurs under anaerobic conditions (fermentations); Fermentations provide usable energy in t absence of oxygen. 3. glycolysis takes place in cytoplasma (细胞质); Glucose is an important fuel for most organisms

2.2.2 Overview of glycolysis 4. The glycolysis pathway consists of two phases Preparatary phase (耗能) 2ATP Payoff phase (产能)2×2 ATP Net: 2 ATP; a limited amount

2.2.2 Overview of glycolysis 5. Intermediary metabolites are phosphated(磷酸化的); 6. Three types of chemical changes; 7. Glycolysis is highly regulated. 碳原子途径 磷酸途径 氧化还原反应的电子途径 Glycolysis is an energy-conversion pathway in many organisms

2.2.2 Overview of glycolysis Glucose is phosphorylated. The negative charge concentrates glucose in the cell and glucose becomes less stable. (P ,C ,e )

8. Types of reactions occurring in glycolysis 2.2.2 Overview of glycolysis 8. Types of reactions occurring in glycolysis Phosphoryl group transfer: kinase(激酶); 激酶 磷酸化酶

8. Types of reactions occurring in glycolysis 2.2.2 Overview of glycolysis 8. Types of reactions occurring in glycolysis Phosphoryl group shift: mutase(变位酶) Phosphoryl shift. A phosphoryl group is shifted from one oxygen atom to another within a molecule by a mutase.

8. Types of reactions occurring in glycolysis 2.2.2 Overview of glycolysis 8. Types of reactions occurring in glycolysis Isomerization: isomerase(异构酶); Isomerization. A ketose (酮糖) is converted into an aldose (醛醣), or vice versa, by an isomerase.

8. Types of reactions occurring in glycolysis 2.2.2 Overview of glycolysis 8. Types of reactions occurring in glycolysis Dehydration: dehydratase(enolase, 烯醇化酶) Dehydration. A molecule of water is eliminated by a dehydratase.

8. Types of reactions occurring in glycolysis 2.2.2 Overview of glycolysis 8. Types of reactions occurring in glycolysis Aldol cleavage: aldolase(醛缩酶) Aldol cleavage. A carbon-carbon bond is split in a reversal of an aldol condensation by an aldolase.

2.2.2 Overview of glycolysis Phosphoryl group transfer: kinase; Phosphoryl group shift: mutase(变位酶); Isomerization: isomerase; Dehydrogenation: dehydrogenase(脱氢酶); Dehydration: dehydratase (enolase,烯醇化酶); Aldol cleavage: aldolase(醛缩酶).

Preparatory phase: Phosphorylation of glucose and its conversion to glyceraldehyde-3-phosphate Payoff phase Conversion of glyceraldehyde-3-phosphate to pyruvate and the coupled formation of ATP

2.2.3 The reactions of glycolysis 葡萄糖 葡萄糖-6-磷酸 果糖-6-磷酸 果糖-1,6-二磷酸 甘油醛-3-磷酸 二羟丙酮磷酸

二羟丙酮磷酸 甘油醛-3-磷酸 1,3-二磷酸甘油酸 3-磷酸甘油酸 2-磷酸甘油酸 磷酸烯醇式丙酮酸 丙酮酸

Intermediary metabolites are phosphated (磷酸化的) Hexokinase traps glucose in the cell and begins glycolysis 带有负电荷的磷酸基团使中间产物具有极性,从而使这些产物不易透过脂膜而失散。 磷酸基团在各反应步骤中,对酶来说,起到信号基团的作用,有利于与酶结合而被催化。 磷酸基团经酵解作用后,最终形成ATP的末端磷酸基团,因此具有保存能量的作用。

Stage of glycolysis The glycolytic pathway can be divided into three stages: 1)Glucose is trapped and destabilized. 2)Two interconvertible three-carbon molecules are generated by cleavage of six-carbon fructose. 3)ATP is generated. Stage 1 of Glycolysis. The three steps of stage 1begin with the phosphorylation of glucose by hexokinase

(1) Glucose is Phosphorylated First to Enter Glycolysis Hexokinase 己糖激酶 ΔG°’= -4.0 kcal mol-1 Phosphoryl transfer reaction. Kinases transfer phosphate from ATP to an acceptor. Hexokinase has a more general specificity in that it can transfer phosphate to other sugars such as mannose(甘露糖).

(1) Glucose is Phosphorylated First to Enter Glycolysis ATP与葡萄糖的反应机制 Mg2+-ATP复合物 ( Mg2+-ATP complex)

(1) Glucose is Phosphorylated First to Enter Glycolysis 己糖激酶与葡萄糖结合时的构象变化 Induced fit in hexokinase. As shown in blue, the two lobes of hexokinase are separated in the absence of glucose. The conformation of hexokinase changes markedly on binding glucose, as shown in red. The two lobes of the enzyme come together and surround the substrate.

(1) Glucose is Phosphorylated First to Enter Glycolysis 1、己糖激酶是一种调节酶,产物葡萄糖-6-磷酸和ADP能使该酶受到变构抑制。但葡萄糖磷酸激酶却不受葡萄糖-6-磷酸的抑制。 2、葡萄糖激酶的对葡萄糖的米氏常数Km (5~10mmol/L) 比己糖激酶的Km值 (0.1mmol/L)大得多,因此,当葡萄糖浓度相当高时,葡萄糖激酶才起作用。

动物己糖激酶同工酶的性质比较 Ⅰ Ⅱ Ⅲ Ⅳ 分布 脑、肾 骨骼肌、心肌 肝、肺 只存在肝中 分子量 kD 100 5-6.8 (葡萄糖激酶) 分布 脑、肾 骨骼肌、心肌 肝、肺 只存在肝中 分子量 kD 100 5-6.8 km(mM葡萄糖) 0.05 0.2 0.007 12 km(mM果糖) 3 800 VG(μM/min·ng pr.) 80 40 VF / VG 1.1 1.2 G6p的反馈抑制 + - 无机磷酸解抑制 无机磷酸减缓抑制 柠檬酸激活

(2) Glucose-6-P Isomerizes from an Aldose to a Ketose Phosphoglucose Isomerase 磷酸葡萄糖同分异构酶 ΔG°’= 0.40 kcal/mol The conversion of an aldose(醛糖) to a ketose(酮糖). 先开环异构化闭环 受6-磷酸-葡萄糖酸抑制(在酸性条件下)

(2) Glucose-6-P Isomerizes from an Aldose to a Ketose Phosphoglucose Isomerase The enzyme opens the ring, catalyzes the isomerization, and promotes the closure of the five member ring.

(3) Fructose-6-P is Further Activated by Phosphorylation Phosphofructokinase PFK(磷酸果糖激酶) The 2nd investment of an ATP in glycolysis. ΔG°’= -3.4 kcal mol-1 PFK is an important allosteric enzyme(别构酶) regulating the rate of glucose catabolism and plays a role in integrating metabolism. Bis means two phosphate groups on two different carbon atoms. Di means two phosphate groups linked together on the same carbon atom.

(3) Fructose-6-P is Further Activated by Phosphorylation 磷酸果糖激酶是一种变构酶,糖酵解的速率严格地依赖该酶的活力水平,它是哺乳动物糖酵解途径最重要的调控关键酶。 肝中PFK受高浓度的ATP的抑制。ATP结合于调节部位。ATP对该酶的别构抑制效应可被AMP解除。因此ATP/AMP的比例关系对此酶有明显的调节作用。

Effectors of phosphofructokinase (PFK) Activators Inhibitors AMP ATP ADP Citrate F6P PEP cAMP phosphocreatine K+ 3PG(甘油酸) NH4+ 2PG (甘油酸) PO43- 2,3BPG (甘油酸) 柠檬酸 磷酸肌酸

(4) Fructose-1,6-Bisphosphate is Cleaved (lysed) in the Middle Aldolase (醛缩酶) 1 4 3 ΔG°’= 5.7 kcal mol-1 Reverse aldol condensation; converts a 6 carbon atom sugar to 2 molecules, each containing 3 carbon atoms.

Stage 2 of glycolysis 果糖-1,6-二磷酸 FBP 二羟丙酮磷酸 (DHAP) 甘油醛-3-磷酸 (GAP)

二羟丙酮磷酸 (DHAP) 甘油醛-3-磷酸 (GAP) (5) Triose phosphate Interconvert Triose phosphate isomerase 丙糖磷酸异构酶 ,TIM ΔG°’ = 1.8 kcal mol-1 二羟丙酮磷酸 (DHAP) 甘油醛-3-磷酸 (GAP)

(5) Triose phosphate Interconvert 甘油醛-3-磷酸

(5) Triose phosphate Interconvert 单烯二羟负 离子中间体 二羟丙酮磷酸 (DHAP) 甘油醛-3-磷酸 (GAP) ΔG°’ = 1.8 kcal mol-1 All the DHAP is converted to glyceraldehyde 3-phosphate(GAP). Although, the reaction is reversible it is shifted to the right since glyceraldehyde 3-phosphate is a substrate for the next reactions of glycolysis. Thus, both 3-carbon fragments are subsequently oxidized. This structural motif, called an TIM barrel, is also found in others glycolytic enzymes. His 95 and Glu 165 located in the barrel is active site .

Catalytic mechanism of triose phosphate isomerase

Stage 3 of glcolysis: the oxidation of three-carbon fragments yields ATP -CH2 -C-OH -C=O -COOH

(6) Glyceraldehyde-3-phosphate is Oxidized The energy yielding phase Glyceraldehyde 3-phosphate DH 甘油醛-3-磷酸脱氢酶,GAPDH 1,3二磷酸甘油酸 ΔG°’ = 1.5 kcal mol-1 An aldehyde(醛)is oxidized to carboxylic acid(羧酸) and inorganic phosphate is transferred to form acyl-phosphate(酰基磷酸). NAD+ is reduced to NADH. 1,3-BPG has a high phosphoryl-transfer potential. It is a mixed anhydride(酐). Notice, under anaerobic conditions NAD+ must be re-supplied.

(6) Glyceraldehyde-3-phosphate is Oxidized GAPDH反应机制 1,3二磷酸甘油酸 ~ 甘油醛-3-磷酸 ∆G0’ = - 43.1 kJ/mol ∆G0’ = 49.4 kJ/mol

(6) Glyceraldehyde-3-phosphate is Oxidized 甘油醛-3-磷酸脱氢酶 The active site includes a Cys and His adjacent to a bound NAD+ GAPDH 碘乙酸 无活性的酶

(6) Glyceraldehyde-3-phosphate is Oxidized 甘油醛-3-磷酸脱氢酶(GAPDH)能够利用砷酸代替磷酸参加反应,生成3-P-甘油酰砷酸,这是一个高度不稳定的化合物, 在水溶液中,可立刻自发地分解为3-P-甘油酸和砷酸。 因此,砷酸不抑制糖酵解的继续进行,但它不能产生高能磷酸键。所以,砷酸是糖酵解中基质水平磷酸化的解偶联剂。

(7) The anhydride phosphate in 1,3-BPG is used to generate ATP Phosphoglycerate Kinase (磷酸甘油酸激酶,PGK) Substrate-level phosphorylation ( 底物水平的磷酸化) ~ 3-磷酸甘油酸 ΔG°’ = -4.5 kcal mol-1 1,3-二磷酸甘油酸 Remember: 2 molecules of ATP are produced per glucose. At this point 2ADPs were invested and 2ATPs are produced.

Mutase belongs to the isomerase family. (8) Phosphate reversibly shifts between C2 and C3 on glycerate Phosphoglycerate mutase 磷酸甘油酸变位酶 ΔG°’ = 1.1 kcal mol-1 Phosphate shift 3-磷酸甘油酸 2-磷酸甘油酸 Mutase belongs to the isomerase family.

2,3-BPG is Involved in Phosphoglycerate Mutase Action 2,3-bisphosphoglycerate 2,3-二磷酸甘油酸 2,3-BPG 在红细胞对氧的转运中还起着调节剂的作用 A phosphorylation cycle exists. 2,3-bisphosphoglycerate initially phosphorylate the enzyme; It is also an intermediate for 3-PG to be converted to 2-PG;

Catalyzed by enolase, generating phosphoenolpyruvate (磷酸烯醇式丙酮酸,PEP); (9) The Phosphoryl Group Transfer Potential is Markedly Elevated by Dehydration Enolase(烯醇化酶) Dehydration reaction ΔG°’ = 0.4 kcal mol-1 Catalyzed by enolase, generating phosphoenolpyruvate (磷酸烯醇式丙酮酸,PEP); An enolphosphate (烯醇磷酸酯) has high phosphoryl (磷酰基)group transfer potential (高基团转移势能).

(9) The Phosphoryl Group Transfer Potential is Markedly Elevated by Dehydration 烯醇化酶与底物结合前先与2价阳离子如Mg2+或Mn2+,形成一个复合物,才有活性. 氟与镁和无机磷酸形成一个复合物,取代天然情况下酶分子上镁离子的位置,从而使酶失活. Enolase can be inhibited by F― strongly.

(10) The Phosphate Group on PEP is Transferred to ADP Pyruvate Kinase,丙酮酸激酶 ΔG°’ = -7.5 kcal mol-1 烯醇式 酮式

(10) The Phosphate Group on PEP is Transferred to ADP 2nd example of substrate level phosphorylation. The net yield from glycolysis is 2 ATP. Substrate level phosphorylcation is the synthesis of ATP from ADP that is not linked to the electron transport system(电子传递系统). PEP+ADPPyr+ATP (底物水平磷酸化)

Summary: ∆G at each step of Glycolysis 标准态 红血球 GlucosePyruvate

Summary: The Conversion of Glucose to Pyruvate Glucose + 2 Pi + 2 ADP + 2 NAD+ → 2 pyruvate + 2 ATP + 2 NADH +2 H+ The Energy released from the anaerobic conversion of glucose to pyruvate is -47 kcal mol-1. Under aerobic conditions much more chemical bond energy can be extracted from pyruvate. The question still remains: How is NAD+ supplied under anaerobic conditions? Or how is redox balance maintained?

2.2.4 Diverse fates of pyruvate ∆G0’ = -25.1 kJ/mol ∆G0’ = -10.46 kJ/mol CO2+H2O Ethanol and lactate can be formed by reactions involving NADH. Alternatively, a two-carbon unit from pyruvate can be coupled to coenzyme to form acetyl CoA.

(1) Pyruvate is the final electron acceptor in lactic acid fermentation Pyruvate reduced (还原) and NAD+ regenerated (生成); Catalyzed by lactate dehydrogenase (乳酸脱氢酶); This happens in animal tissues when O2 is limited; This also happens in many microorganisms (e.g., lactobacilli). What happens after a run?

(2) Acetaldehyde is the final electron acceptor in alcohol fermentation Pyruvate decarboxylase 丙酮酸脱羧酶 (present only in those alcohol fermentative organisms) and alcohol dehydrogenase 乙醇脱氢酶 (present in many organisms including human) catalyzes the two-step reactions. ∆G0’ = -10.46 kJ/mol

Remember! 酵解过程必须提供NAD+,而缺氧的情况下, NADH不能够把H传递给电子传递链而产生NAD+;NADH的H可以选择传递给产物从而使酵解过程得以进行从而产生能量。

2.2.5 Overal balance of glycolysis 碳原子途径(碳骨架的去向): 2  3C Glucose(6C) 2pyruvate(3C) 2  2C + 2CO2 消耗 G6P 的形成 -1 FBP的形成 -1 产生 1,3-二磷酸甘油酸的形成 + 2 PEP的形成 + 2 磷原子途径 (ATP的变化): 氧化还原反应的电子途径: 1,3-二磷酸甘油酸的形成 2  NADH + H+ 终产物

Overall balance: Glucose + 2ADP + 2Pi + 2NAD+ 2 pyruvate + 2ATP + 2H2O + 2NADH + 2H+ Glucose + 2 ADP + 2Pi 2 lactates + 2ATP + 2H2O + 135.56 kJ/mol Glucose + 2 ADP + 2Pi 2 Ethanol + 2ATP + 2CO2 + 2H2O + 106.27 kJ/mol

2.2.6 Regulation of the Glycolytic pathway The glycolytic pathway is tightly controlled Enzyme reactions that have a significant negative ΔG°’ are often control sites. IN glycolysis: Hexokinase Phosphofuctokinase(PFK) Pyruvate Kinase are regulatory enzymes. PFK is the most important. 磷酸果糖激酶催化的反应是糖酵解的限速反应。

2.2.6.1 PFK is an allosteric enzyme High levels of ATP inhibit, increased levels of AMP reverses the action of ATP. Citrate(柠檬酸) also inhibits PFK. High levels of citrate indicates that the cell is rich in biosynthetic precursors(生物合成前导物) emanating from the pathway. 糖酵解作用不仅是提供能量,也为生物合成提供碳骨架。

2.2.6.1 PFK is an allosteric enzyme 酶分子可逆变构,磷酸化作用调节及转录控制根据不同情况下可在百万之一秒、几秒或几小时内发生变化。

2.2.6.1 PFK is an allosteric enzyme F-1,6-BP + ADP ATP + F-6-P 前馈刺激 PFK2 F-2,6-BP + ADP F-2,6-BP is an allosteric activator, increasing the affinity of PFK for fructose 6-phosphate. Thus, stimulating glycolysis(加速糖酵解). G多G-6-P多,葡萄糖激酶作用,而G-6-P,则F-6-P多,ATP与F-6-P在PFK2的作用下生成F-2,6-BP Fructose 2,6-bisphosphate (果糖-2,6-二磷酸)activates PFK; it is a positive allosteric effector (激活剂).

2.2.6.1 PFK is an allosteric enzyme FBPase2 Two Enzymatic Activities Control the levels F-2,6-BP. Phosphofructokinase 2 (PFK-2) catalyzes the formation of F-2,6-BP from F-6P. F-2,6-BP is converted back to F-6P by fructose bisphosphatase 2 (FBPase-2). Both activities are on the same protein. It’s a bifunctional enzyme.

2.2.6.2 Hexokinase also Regulates Glycolysis Hexokinase is inhibited by its product, glucose 6-phosphate. High concentrations of glucose 6-phosphate indicates that the cell no longer needs glucose for energy, for storage as glycogen, or for other precursors. Remember that the liver (肝脏) is responsible for regulating blood glucose levels.

Hexokinase and Glucokinase. 2.2.6.2 Hexokinase also Regulates Glycolysis Hexokinase and Glucokinase. The liver contains an isoform of hexokinase called glucokinase (葡萄糖激酶) Glucokinase is not inhibited by glucose 6-phosphate. Glucokinase has a lower affinity for glucose than hexokinase. This assures that brain and muscle have first choice for the glucose. When glucose is abundant in the liver, glucokinase phosphorylates glucose to glucose 6-phosphate specifically for glycogen synthesis.

2.2.6.3 Pyruvate kinase has regulatory role in glycolysis Pyruvate Kinase has an L (liver) and M (muscle and brain) form. Both forms are inhibited by its product, ATP. Fructose 1,6-bisphosphate activates both forms of the enzyme to keep pace with the influx (流入) on intermediates. 当机体能荷或糖酵解的中间物积累时,丙酮酸激酶达到活跃顶峰。 Alanine (丙氨酸) can be reversibly transaminated (转氨) to pyruvate. Alanine also inhibits pyruvate kinase thus indicating that building blocks are abundant.

Phosphorylation of Pyruvate Kinase When blood-glucose levels are low the glucagon cAMP cascade phosphorylates pyruvate kinase making it less active. This covalent regulation assures that brain and muscle get glucose when needed. Pyruvate kinase: only L-form is regulated by covalent modification.

2.2.7 其它糖进入糖酵解的途径 G0’ = 3.05 kJ/mol 2.2.7 其它糖进入糖酵解的途径 2.2.7.1. Glycogen(糖原) is converted to glucose-1-P by phosphorolysis(磷酸解) G0’ = 3.05 kJ/mol The reaction is a phosphorolysis, not hydrolysis.

2.2.7 其它糖进入糖酵解的途径 Mutase 变位酶 G0’ = -7.28 kJ/mol

2.2.7.2 Fructose(果糖)enters glycolysis mainly via F-1-P pathway 2.2.7 其它糖进入糖酵解的途径 2.2.7.2 Fructose(果糖)enters glycolysis mainly via F-1-P pathway

2.2.7.3 Mannose(甘露糖) enters glycolysis mainly via the Fru-6-P pathway 2.2.7 其它糖进入糖酵解的途径 2.2.7.3 Mannose(甘露糖) enters glycolysis mainly via the Fru-6-P pathway ATP ADP Mannose Mannose-6-phosphate Hexokinase M6P isomerase 异构酶 Fructose-6-phosphate 2位

In adults: Glucose-6-phosphate 2.2.7.4 Galactose (半乳糖) enters glycolysis pathway via the galactose-glucose interconversion pathway (p87-88) 尿苷酰转移酶 ATP ADP Galactose-1-phosphate UDP-Galactose Galactose galactokinase NAD+ NADH 4位 UDP-4-keto-Glucose UTP PPi NADH Glucose-6-phosphate Glucose-1-phosphate NAD+ UDP-Glucose mutase UDP-半乳糖-4-差向异构酶 UDP-Galactose 4-epimerase UDP-葡萄糖焦磷酸化酶 In adults:

In infants: Galactose-1-phosphate Galactose UDP-Glucose UDP-Galactose 2.2.7.4 Galactose enters glycolysis pathway via the galactose-glucose interconversion pathway ADP ATP Galactose-1-phosphate Galactose UDP-Glucose galactokinase NAD+ NADH UDP-4-keto-Glucose Galactose-1-phosphate uridylyl transferase NADH NAD+ Glucose-1-phosphate UDP-Galactose mutase UDP-Galactose 4-epimerase Glucose-6-phosphate In infants:

Entry points in glycolysis for galactose and fructose 双糖及多糖经消化后形成的单糖主要是葡萄糖,其他的单糖产物果糖、半乳糖、甘露糖等,都转变成糖酵解的中间产物之一而进入糖酵解的共同途径。

乳糖 海藻糖 糖原,淀粉 蔗糖 甘露糖

2.2.7 其它糖进入糖酵解的途径 2.2.7.5 Glycerol (甘油) ADP (1) Glycerol + ATP 2.2.7 其它糖进入糖酵解的途径 2.2.7.5 Glycerol (甘油) ADP (1) Glycerol + ATP Glycerol-3-phosphate glycerolkinase NAD+ NADH +H+ (2) Glycerol-3-phosphate Dihydroxyacetonephosphate 二羟基丙酮磷酸

2.2.7 其它糖进入糖酵解的途径 2.2.7.5 Glycerol (甘油) 甘油是前手性分子 DHAP

2.2.8 糖酵解中的能量利用率 纯有机化学反应由葡萄糖生产乳酸: G0’ = -196.56 kJ/mol 2.2.8 糖酵解中的能量利用率 纯有机化学反应由葡萄糖生产乳酸: G0’ = -196.56 kJ/mol 胞内生化反应由葡萄糖生产乳酸: G0’ = -135.6 kJ/mol 差值用于ATP的合成:61 kJ/mol 则能量利用率为: 同理酵母转化葡萄糖为乙醇时的能量利用率:

2.2.8 糖酵解中的能量利用率 注意: 以上能量利用率的计算是按照标准条件下的物质浓度计算的,而在生物细胞中,生化反应中间产物的浓度远远达不到标准状况,根据胞内物质的能量计算,产生1个ATP所固定的能量约为50.2-54.4 kJ/mol,则能量转换率为50%或更高。