Review of Material Balance 4.1 Introduction 4.2 Basic principle for material balance (MB) 4.3 Examples for MB 4.3.1 MB for physical process 4.3.2 MB for chemical process 1. The conversions rate including the overall rate are based on the reactants. 2. The yield is mainly based on the product as well as the reactants. 3. The selectivity is also based on the reactants. 1) 限制反应物: 化学反应原料不按化学计量比配料时,以最小化学计量数存在的反应物。 2) 过量反应物: 反应物的量超过限制反应物完全反应所需的理论量的,该反应物叫过量反应物。 3) 过量百分数: 过量反应物超过限制反应物完全反应所需理论量Nt的部分占所需理论量的百分数。
第五章 能量衡算 Chapter 5 Energy Balance 孟 歌 Mobile:15877657967 http://gr.xjtu.edu.cn/web/mengge/1 Email:mengge@mail.xjtu.edu.cn Time:2015, 10, 23~26 Location:药教楼13 西安交通大学药学院
MB referred to Mass Balance! EB follow after MB MB referred to Mass Balance! 物料平衡表
物料平衡表的基本格式 组分 输入 输出 kg/h w% kmol/h y% A B C 总计
20万吨甲醇物料平衡表
物料平衡表自动生成工具 PROIITools 2009.10.05.17 PROII物料平衡表自动生成工具(V09.03.24.16).PROII是典型的化工流程模拟软件,广泛应用于石油化工等过程工业领域,在中国有大量的用户群。PROII是英文软件,其报表格式不符合中国习惯。尽管后续版本不断增强其报表能力,但是毕竟无法生成我们习惯的、特别是工业设计规定格式的报表。PROIITools在此背景下诞生。PROIITools使用特殊的技术,用户使用它打开PROII的*prz、pr1文件,就可以"一键"生成整个模拟的物料平衡表文件,它是中文的Excel文件,完全符合工业设计的要求。格式精美,数据可靠。PROIITools的高速度将给设计人员带来极大的方便。PROII用户需要经常改变模拟方案,重复计算,重复生成物料平衡表。常常改变一下PROII流程计算并不困难,用户头痛的是要重新制作物料平衡表。设想一下成千个流股的物料平衡表手工生成的麻烦程度。有了PROIITools,这个问题将成为历史。
5.1 Introduction 无热效应过程: 有热效应过程: 根据物料衡算结果及物料性质、处理量和工艺要求进行设备工艺设计,以确定设备型式、数量和主要工艺尺寸。 有热效应过程: 须进行能量衡算,确定设备主要工艺尺寸。 药品生产中,无论是物理过程,还是化学过程,大多存在一定热效应,通常要进行能量衡算。
The purpose of EB-1 Similar to MB 对于新设计的设备或装置,能量衡算的目的主要是为了确定设备或装置的热负荷。根据热负荷的大小以及物料的性质和工艺要求,可进一步确定传热设备的型式、数量和主要工艺尺寸。此外,热负荷也是确定加热剂或冷却剂用量的依据。
The purpose of EB-2 在实际生产中,根据需要,也可对已经投产的一台设备、一套装置、一个车间或整个工厂进行能量衡算,以寻找能量利用的薄弱环节,为完善能源管理、制定节能措施、降低单位能耗提供可靠的依据。
能量衡算的依据 物料热力学数据: 物料衡算结果: 如定压比热、 物料衡算表: 相变热、 原料量、 反应热、 比率、 溶解热、 产率、 等。
能量衡算的理论基础 能量守恒定律
5.2 Energy Balance 5.2.1 Energy Balance Equations 5.2.2 Calculations of Various Energy 5.2.3 Methods and Approaches
The first law of thermodynamics 热力学第一定律 表达式为: Q=△U+W 当内能、动能、势能变化量可忽略且无轴功时,输入系统热量与离开系统热量应相等。 为阐明质量概念做出突出贡献的是发现物质的力学定律的牛顿。 为阐明能量概念做出突出贡献的是热力学第一定律的发现者们(迈耳 J.R.Mayer、焦耳 T.P.Joule、赫尔姆霍兹 H.Helmholtz、开尔文 Lord Kelvin)。 为阐明信息概念做出突出贡献的应当是申农(C.E.Shannon)。 T.P. Joule (1818,12,24-1889,10,11)
5.2.1 Energy balance Equations 传热设备热量平衡方程式为: (5-1) Q1—物料带入设备的热量,kJ(+) ; Q2—加热剂或冷却剂传给设备及所处理物料的热量,kJ(±); Q3—过程的热效应,kJ (±) (P & C); Q4—物料带出设备的热量,kJ (+) ; Q5—加热或冷却设备所消耗的热量或冷量,kJ (±); Q6—设备向环境散失的热量,kJ (±) 。
Note for EBE : Q值正负 上式中应注意除Q1和Q4外,其它Q值都有正负。如, 当反应放热时,Q3取“+”号; 这与热力学中的规定正好相反。 与热力学中的规定正好相反 的原因分析,因为:放热过程对于分子是热量的丧失,而对于设备是热量的获得。吸热过程对于分子是热量的获得,而对于设备是热量的丧失。
5.2.1 Energy balance Equations Q2负,需从设备及所处理的物料移走热量,需冷却。此外,对于间歇操作,由于不同时间段内的操作情况可能不同,因此,应按不同时间段分别计算Q2值,并取其最大值作为设备热负荷的设计依据。 为求出Q2,必须求出式(5-1)中其它各项热量的值。
Aim:Q2 5.2.2 Calculations of various energy (1) Criterion of Calculation (2) Calculations of Q1 or Q4 (3) Calculation of Q3 (4) Calculation of Q5 Aim:Q2 (5) Calculation Q6
(1) Criterion of Calculation 在计算各项热量之前,首先要确定一个计算基准。一般情况下,可以0oC和1.013105 Pa为计算基准。对于有反应的过程,也常以25oC和1.013105Pa为计算基准。
(2) Calculations of Q1 or Q4 若物料在基准温度和实际温度之间没有相变化,则可利用定压比热计算物料所含有的显热,即 (5-2) G—输入或输出设备的物料量,kg; t0—基准温度,0C; t2—物料的实际温度,0C; Cp—物料的定压比热,kJkg-1oC-1。 比热:比热容(specific heat capacity)又称比热容量,简称比热(specific heat),是单位质量物质的热容量,即是单位质量物体改变单位温度时的吸收或释放的热量。比热容是表示物质热性质的物理量。通常用符号c表示。 一定质量的某种物质,温度升高(或降低)1摄氏度所吸收(或放出)的热量,叫做这种物质的比热容(比热值),用符号c表示。其国际单位制中的单位是焦耳每千克开尔文(J /(kg·K) 或 J /(kg·℃),J是指焦耳,K是指热力学温标,与摄氏度℃相等),即令1千克的物质的温度上升(或下降)1摄氏度所需的能量。根据此定理,便可得出以下公式: 定压比热 英文名称:specific heat at constant pressure 定义:流体在定压条件下的比热。
定压比热的计算 物料的定压比热与温度之间的函数关系常用多项式来表示,即 (5-3) 或 (5-4) 或 (5-4) 式中a、b、c、d—物质的特性常数,可从有关手册查得。
定压比热的计算简化:平均定压比热的计算 (5-5) 若已知物料在所涉及温度范围内的平均定压比热,则式(5-2)可简化为 Cp—物料在(t0~t2)oC内平均定压比热,kJkg-1 oC-1。
(3) Calculations of Q3 (5-6) 式中 Qp——物理变化热,kJ; Qc——化学变化热,kJ。 过程的热效应由物理变化热和化学变化热两部分组成,即 (5-6) 式中 Qp——物理变化热,kJ; Qc——化学变化热,kJ。
物理变化热是指物料的浓度或状态发生改变时所产生的热效应,如蒸发热、冷凝热、结晶热、熔融热、升华热、凝华热、溶解热、稀释热等。 (3) Calculations of Q3 物理变化热是指物料的浓度或状态发生改变时所产生的热效应,如蒸发热、冷凝热、结晶热、熔融热、升华热、凝华热、溶解热、稀释热等。 如果所进行的过程为纯物理过程,无化学反应发生,如固体的溶解、硝化混酸的配制、液体混合物的精馏等,则 。 化学变化热是指组分之间发生化学反应时所产生的热效应,可根据物质的反应量和化学反应热计算。
(4) Calculations of Q5 (5-7) 式中G—设备各部件的质量,kg;Cp—设备各部件材料的平均定压比热,kJkg-1oC-1;t1—设备各部件的初始温度,oC;t2—设备各部件的最终温度,oC。 与其他各项热量相比,Q5的数值一般较小,因此,Q5常可忽略不计。
(5) Calculations of Q6 (5-8) T—对流-辐射联合传热系数,Wm-2oC-1; AW—与周围介质直接接触的设备外表面积,m2; tW—与周围介质直接接触的设备外表面温度,oC; t—周围介质的温度,oC; —散热过程持续的时间,s。
对于有保温层的设备或管道,其外壁向周围介质散热的联合传热系数可用下列经验公式估算。 (5) Calculations of Q6 对于有保温层的设备或管道,其外壁向周围介质散热的联合传热系数可用下列经验公式估算。 (1) 空气在保温层外作自然对流,且 在平壁保温层外,T可按下式估算 (5-9) 在圆筒壁保温层外,T可按下式估算 (5-10)
(5) Calculations of Q6 当空气流速不大于5ms-1时,T可按下式估算 (5-11) (2) 空气沿粗糙壁面作强制对流 当空气流速不大于5ms-1时,T可按下式估算 (5-11) 式中 u——空气流速,ms-1。 当空气速度大于5ms-1时,T可按下式估算 (5-12) (3) 对于室内操作的釜式反应器,T的数值可近似取为10 Wm-2oC-1。
5.2.3 Methods and approaches 1) 明确衡算目的,如通过热量衡算确定某设备或装置的热负荷、加热剂或冷却剂的消耗量等数据。 2) 明确衡算对象,划定衡算范围,并绘出热量衡算示意图。为了计算方便,常结合物料衡算结果,将进出衡算范围的各股物料的数量、组成和温度等数据标在热量衡算示意图中。
5.2.3 Methods and approaches 3) 收集与热量衡算有关的热力学数据,如定压比热、相变热、反应热等。 4) 选定衡算基准。 5) 列出热量平衡方程式,进行热量衡算。 6) 编制热量平衡表。
5.3 Thermal effects Q3 = Qp + Qc 5.3.1 Thermal in Physical changes 过程热效应 5.3.2 Thermal in Chemical changes 过程热效应
5.3.1 Thermal in physical changes 物理变化热是指物料的状态或浓度发生变化时所产生的热效应,常见的有相变热和浓度变化热。 1.Thermal of phase transition 2.Thermal of concentration change
5.3.1 Thermal in Physical Changes 物质从一相转变至另一相的过程,称为相变过程,如蒸发、冷凝、熔融、结晶、升华、凝华都是常见的相变过程。相变过程常在恒温恒压下进行,所产生的热效应称为相变热。由于相变过程中,体系的温度不发生改变,故相变热常称为潜热。 蒸发、熔融、升华过程要克服液体或固体分子间的相互吸引力,因此,这些过程均为吸热过程,按式(5-1)中的符号规定,其相变热为负值;反之,冷凝、结晶、凝华过程的相变热为正值。
1. Thermal of Phase transition 各种纯化合物的相变热可从有关手册、文献中查得,但应注意相变热的单位及正负号。一般热力学数据中的相变热以吸热为正,放热为负,与式(5-1)中的符号规定正好相反。
2. Thermal of Concentration change 恒温恒压下,溶液因浓度发生改变而产生的热效应,称为浓度变化热。在药品生产中,以物质在水溶液中的浓度变化热最为常见。但除了某些酸、碱水溶液的浓度变化热较大外,大多数物质在水溶液的浓度变化热并不大,不会影响整个过程的热效应,因此,一般可不予考虑。
2. Thermal of Concentration change 某些物质在水溶液中的浓度变化热可直接从有关手册或资料中查得,也可根据溶解热或稀释热的数据来计算。 (1) Integral heat of solution (2) Integral heat of dilution
(1) Integral heat of solution 恒温恒压下,将1摩尔溶质溶解于n摩尔溶剂中,该过程所产生的热效应称为积分溶解热,简称溶解热,用符号Hs表示。常见物质在水中的积分溶解热可从有关手册或资料中查得。
(1) Integral heat of solution 表5-1 25 oC时,H2SO4水溶液的积分溶解热 H2O摩尔数n/mol 积分溶解热Hs/kJmol-1 0.5 15.74 50 73.39 1.0 28.09 100 74.02 2 41.95 200 74.99 3 49.03 500 76.79 4 54.09 1000 78.63 5 58.07 5000 84.49 6 60.79 10000 87.13 8 64.64 100000 93.70 10 67.07 500000 95.38 25 72.35 96.25 注:表中积分溶解热的符号规定为放热为正、吸热为负。
(1) Integral heat of solution (5- 13) 式中 Hs—SO3溶于水形成硫酸的积分溶解热,kJ(kg H2O)-1;m—以SO3计,硫酸的质量分率; t—操作温度,0C。
(1) Integral heat of solution 又如,硝酸的积分溶解热可用下式估算 (5-14) 式中Hs——硝酸的积分溶解热,kJ(mol HNO3)-1; n——溶解1mol HNO3的H2O的摩尔数,mol。
(1) Integral heat of solution 再如,盐酸的积分溶解热可用下式估算 (5-15) 式中 Hs——盐酸的积分溶解热,kJ(mol HCl)-1; n——溶解1mol HCl的H2O的摩尔数,mol。
(2) Integral heat of dilution 恒温恒压下,将一定量的溶剂加入到含1摩尔溶质的溶液中,形成较稀的溶液时所产生的热效应称为积分稀释热,简称稀释热。 积分稀释热 = 不同浓度积分溶解热之差
(2) Integral heat of dilution 例如,向由1mol H2SO4和1mol H2O组成的溶液中加入5mol水进行稀释的过程可表示为 由表5-1可知,1mol H2SO4和6mol H2O组成的H2SO4水溶液的积分溶解热为60.79 kJmol-1,1mol H2SO4和1mol H2O组成的H2SO4水溶液的积分溶解热为28.09 kJmol-1,则上述稀释过程的浓度变化热或积分稀释热为 Qp
Examples 例5-1 在25 oC和1.013105Pa下,用水稀释78%的硫酸水溶液以配制25%的硫酸水溶液。拟配制25%的硫酸水溶液1000kg,试计算:(1) 78%的硫酸溶液和水的用量;(2) 配制过程中H2SO4的浓度变化热。 XY,Z
Examples 解:(1) 78%的硫酸溶液和水的用量 设 为78%的硫酸溶液的用量, 为水的用量,则 (a) (b) 解:(1) 78%的硫酸溶液和水的用量 设 为78%的硫酸溶液的用量, 为水的用量,则 (a) (b) 联解式(a)、(b)得 =320.5kg, =679.5kg
Examples 配制前H2O的摩尔数为 则 由表5-1用内插法查得 kJmol-1 (2) 配制过程中H2SO4的浓度变化热 配制前后,H2SO4的摩尔数均为 配制前H2O的摩尔数为 则 由表5-1用内插法查得 kJmol-1
Examples 配制后H2O的摩尔数变为 则 由表5-1查得 kJmol-1
配制过程
Qp = n H2SO4 (⊿Hs2 - ⊿Hs1) = 2550.9 × (69.30 – 35.57) = 8.604×104 (kJ) 根据盖斯定律得: nH2SO4⊿Hs1 + Qp = nH2SO4⊿Hs2 Qp = n H2SO4 (⊿Hs2 - ⊿Hs1) = 2550.9 × (69.30 – 35.57) = 8.604×104 (kJ) 硫酸配制过程放热:8.604×104 kJ。 1840年俄国化学家盖斯(Hess,也译作赫斯)在总结大量实验事实(热化学实验数据)的基础上提出在“定压或定容条件下的任意化学反应,在不做其它功时,不论是一步完成的还是几步完成的,其热效应总是相同的(反应热的总值相等)。”这叫作盖斯定律。
5.3.2 Thermal in Chemical Changes 过程的化学变化热可根据反应进度和化学反应热来计算,即 (5-16) 式中 ——反应进度,mol; ——化学反应热(放热为正,吸热为负),kJmol-1
5.3.2 Thermal in Chemical Changes (5-17) 式中nA0—反应开始时反应物A的摩尔数,mol; nA—某时刻反应物A的摩尔数,mol; A—反应物A在反应方程式中的系数。
5.3.2 Thermal in Chemical Changes 显然,对于同一化学反应而言,以参与反应的任一组分计算的反应进度都相同。但反应进度与反应方程式的写法有关。例如,氢与氧的热化学方程式为 kJmol-1(放热) 当反应进度为2mol时,过程的化学变化热为
5.3.2 Thermal in Chemical Changes 若将氢与氧的热化学方程式改写为 kJmol-1(放热) 而其它条件均不变,则反应进度变为1mol,过程的化学变化热为 可见,反应进度与反应方程式的写法有关,但过程的化学变化热不变。
5.3.2 Thermal in Chemical Changes 化学反应热与反应物和产物的温度有关。热力学中规定化学反应热是反应产物回复到反应物的温度时,反应过程放出或吸收的热量。若反应在标准状态(250C和1.013105Pa)下进行,则化学反应热又称为标准化学反应热,用符号 表示。
5.3.2 Thermal in Chemical Changes 化学反应热可从文献、科研或工厂实测数据中获得。当缺少数据时,也可由生成热或燃烧热数据经计算而得。 1.According to Standard Heats of Formation 1.由标准生成热计算标准化学反应热 2.由标准燃烧热计算标准化学反应热 3.非标准条件下的化学反应热 2.According to Standard Heats of Combustion 3.Off standard conditions
1.According to Standard Heats of Formation 由盖斯定律得 (5-18) 产物 反应物 式中 ——反应物或产物在反应方程式中的系数; ——反应物或产物的标准生成热,kJmol-1。 1.由标准生成热计算标准化学反应热
1.According to Standard Heats of Formation 物质的标准生成热数据可从有关手册中查得。但应注意,一般手册中标准生成热的数据常用焓差,即 表示,并规定吸热为正,放热为负,这与式(5-1)中的符号规定正好相反。为使求得的 的符号与式(5-1)中的符号规定相一致,在查手册时可在 前加一“”号。
2. According to Standard Heats of Combustion 由盖斯定律得 (5-19) 反应物 产物 式中 —反应物或产质的标准燃烧热,kJmol-1。 物质的标准燃烧热也可从有关手册中查得。同样,在查手册时应在 前加一“” 号,以使 的符号与式(5-1)中的符号规定相一致。 2.由标准燃烧热计算标准化学反应热
3. Off standard conditions 若反应在toC下进行,且反应物和产物在(25~t)oC之间均无相变化,则可设计如下途径完成该过程 由盖斯定律得 (5-20) 反应物 产物 式中t—反应温度,oC;Cpi—反应物或产物在(25~t) oC之间的平均定压比热,kJmol-1 oC-1。 反应物 t oC 产物 t oC (t-25)iCpi -(t-25)iCpi 反应物25oC 产物 25 oC 3.非标准条件下的化学反应热
3. Off standard conditions 若某反应物或产物在(25~t)oC之间存在相变,则式(5-20)等号右面的加和项应作修正。例如,若反应物中的j组分在温度t'(25< t<t)时发生相变,则可设计如下途径完成该过程
式中j—反应物j在化学反应方程式中的系数; 3. Off standard conditions 式中j—反应物j在化学反应方程式中的系数; rj—反应物j在t' oC时的相变热,kJmol-1。 应注意物质的相态不同,其Cp值也不同
5.4 Examples of Energy Balance 例5-2 物料衡算数据如表4-3所示。已知加入甲苯和浓硫酸的温度均为30oC,脱水器的排水温度为65oC,磺化液的出料温度为140oC,甲苯与硫酸的标准化学反应热为117.2kJmol-1(放热),设备(包括磺化釜、回流冷凝器和脱水器,下同)升温所需的热量为1.3×105kJ,设备表面向周围环境的散热量为6.2×104kJ,回流冷凝器中冷却水移走的热量共9.8×105kJ。试对甲苯磺化过程进行热量衡算。
5.4 Examples of Energy Balance 有关热力学数据为:原料甲苯的定压比热为1.71 kJkg-1oC-1;98%硫酸的定压比热为1.47kJkg-1oC-1;磺化液的平均定压比热为1.59 kJkg-1oC-1;水的定压比热为4.18kJkg-1oC-1。
5.4 Examples of Energy Balance 解:对甲苯磺化过程进行热量衡算的目的是为了确定磺化过程中的补充加热量。依题意可将甲苯磺化装置(包括磺化釜、回流冷凝器和脱水器等)作为衡算对象。此时,输入及输出磺化装置的物料还应包括进、出回流冷凝器的冷却水(参见图3-11),其带出和带入热量之差即为回流冷凝器移走的热量。若将过程的热效应作为输入热量来考虑,则可绘出如图5-1所示的热量衡算示意图。
5.4 Examples of Energy Balance 图5-1 甲苯磺化装置热量衡算示意图
5.4 Examples of Energy Balance 则热量平衡方程式可表示为 取热量衡算的基准温度为25oC,则
5.4 Examples of Energy Balance 反应中共加入98%浓硫酸的质量为1100kg,其中含水22kg。若以SO3计,98%硫酸的质量分率为80%。由式(5-13)得
5.4 Examples of Energy Balance 反应结束后,磺化液含硫酸35.2kg,水21.4kg。以SO3计,硫酸的质量分率为50.8%。则 所以
5.4 Examples of Energy Balance 反应消耗的甲苯量为979kg,则
Q2 的计算 Q4 = 1906.9 × 1.59 × (140 – 25) + 193.1 × 4.18 × (65 – 25) = 3.81×105 (kJ) Q5 = 1.3×105 kJ Q6 = 6.2×104 kJ Q7 = 9.8×105 kJ Q2 = Q4 + Q5 + Q6 + Q7 – Q1 – Q3 = 3.81×105 + 1.3×105 + 6.2×104 + 9.8×105 – 1.66×104 – 1.32×106 =2.16×105 (kJ) 磺化过程需补充热量2.16×105 kJ。
5.4 Examples of Energy Balance 表5-2 甲苯磺化过程热量平衡表 Energy balance sheet
热量衡算的枢纽:Q2
5.5 Calculation of Consumption of Coolant, heating source and other energy 5.5.1 Coolant and Heating source frequently-used 5.5.2 Consumption of Coolant and Heating source 5.5.3 Consumption of fuel 5.5.4 Consumption of Electric Energy 5.5.5 Consumption of Compressed air 5.5.6 Calculation of Sucking rate Vacuumed
5.5.1 Coolant and Heating source frequently-used 由热量衡算可确定设备的热负荷,根据工艺要求和热负荷的大小,可选择适宜的加热剂或冷却剂,以向设备提供或从设备移除热量。常用的加热剂有热水、饱和水蒸汽(低压、高压)、导热油、道生液、烟道气和熔盐等;常用的冷却剂有空气、冷却水、冰和冷冻盐水等。
2.Consumption of Coolant 5.5.2 Consumption of Coolant and Heating source 1.Consumption of Steam 2.Consumption of Coolant
1. Consumption of Steam (1) 间接蒸汽加热时的蒸汽消耗量 (1) 间接蒸汽加热时的蒸汽消耗量 若以0 oC为基准温度,间接蒸汽加热时水蒸汽的消耗量可用下式计算 (5-22) 式中W—蒸汽消耗量,kg或kgh-1;Q2—由蒸汽传递给物料及设备的热量,kJ或kJh-1;H—蒸汽的焓,kJkg-1;Cp—冷凝水的定压比热,取4.18kJ kg-1oC-1;t—冷凝水的温度,0C;—热效率。保温设备取0.97~0.98;不保温设备取0.93~0.95。
1. Consumption of Steam 若以0 oC为基准温度,直接蒸汽加热时水蒸汽的消耗量可用下式计算 (5-23) (2) 直接蒸汽加热时水蒸汽的消耗量 若以0 oC为基准温度,直接蒸汽加热时水蒸汽的消耗量可用下式计算 (5-23) 式中 tk——被加热液体的最终温度,oC。
2. Consumption of Coolant 在药品生产中,水、冷冻盐水和空气均为常用的冷却剂,其消耗量可用下式计算 (5-24) 式中W—冷却剂的消耗量,kg或kgh-1; Cp—冷却剂的平均定压比热,kJkg-1oC-1; t1—冷却剂的初温,oC; t2—冷却剂的终温,oC。
2. Consumption of Coolant 水和空气的定压比热均随温度而变化,但变化并不显著。一般情况下,水的定压比热可取4.18kJkg-1oC-1,空气的定压比热可取1.01kJkg-1oC-1。氯化钠水溶液的定压比热与温度和浓度有关,如表5-5所示。
2. Consumption of Coolant 表5-5 氯化钠水溶液的定压比热
5.5.3 Consumption of fuel (5-25) 燃料的消耗量可用下式计算 (5-25) 式中G—燃料的消耗量,kg或kgh-1;—燃烧炉的热效率,一般燃烧炉的值可取0.3~0.5,锅炉的值可取0.6~0.92;Qp—燃料发热量,kJkg-1。 表5-6 几种燃料的发热量
5.5.4 Consumption of Electric Energy 电能的消耗量可用下式计算 (5-26) 式中E—电能的消耗量,kWh(1kWh=3600kJ); —电热装置的热效率,一般可取0.85~0.95。
物料运输过程的空气压缩和抽气量 加压和减压都是空气流动的过程,需要耗能。
5.5.5 Consumption of Compressed air 一般情况下,压缩空气的消耗量均要折算成常压(1.013105Pa)下的空气体积或体积流量。因此,首先要计算出压缩空气的压强以及操作状态下的空气体积或体积流量。
5.5.5 Consumption of Compressed air —Liquid material (1) 每次操作均将设备中的液体全部压完时的压缩空气消耗量 以常压(1.013105Pa)下的空气体积计,一次操作所需的压缩空气消耗量为 (5-28) 式中 Vb—一次操作所需的压缩空气体积,m3次-1;VT—设备容积,m3; P——压缩空气在设备内建立的压强,Pa。
5.5.5 Consumption of Compressed air —Liquid material 若每天压送物料的次数为n,则每天操作所需的压缩空气体积为 (5-29) 式中Vd—每天操作所需压缩空气体积,m3d-1。 每小时操作所需的压缩空气体积为 (5-30) 式中Vh—每小时操作所需压缩空气体积,m3h-1。—每次压送液体所持续的时间,h。
5.5.5 Consumption of Compressed air —Liquid material (2) 每次操作仅将设备中的部分液体压出时的压缩空气消耗量 以常压(1.013105Pa)下的空气体积计,一次操作所需的压缩空气消耗量为 (5-31) 式中 ——设备的装料系数; V1——每次压送的液体体积,m3。 每天或每小时操作所需的压缩空气体积可分别按式(5-29)或(5-30)计算。
5.5.5 Consumption of Compressed air —Agitating Liquid material 以常压(1.013105Pa)下的空气体积计,一次操作所需的压缩空气消耗量为 (5-33) 式中 K——系数,缓和搅拌取24,中等强度搅拌取48,强烈搅拌取60; A——被搅拌液体的横截面积,m2; ——一次搅拌操作持续的时间,h。 每天或每小时操作所需的压缩空气体积可分别按式(5-29)或(5-30)计算。
每天或每小时操作所需的抽气量可分别按式(5-29)或(5-30)计算。 5.5.6 Calculation of Sucking rate Vacuumed —6.1 Sucking Liquid material 一次抽吸操作所需的抽气量为 (5-34) 式中 Pk——设备中的剩余压强,Pa。 每天或每小时操作所需的抽气量可分别按式(5-29)或(5-30)计算。 Calculation of Sucking rate Vacuumed
5.5.6 Calculation of Sucking rate Vacuumed —6.2 Vacuum Filtration 一次抽滤操作所需的抽气量为 (5-35) 式中 C——经验常数,可取15~18; A——真空过滤器的过滤面积,m2; ——一次抽滤操作持续的时间,h。 每天或每小时操作所需的抽气量可分别按式(5-29)或(5-30)计算。
5.5.6 Calculation of Sucking rate Vacuumed —6.3 Vacuum Evaporation 在真空蒸发操作中,由设备、管道等的连接处漏入的空气以及溶液中的不凝性气体会在冷凝器内积聚,这不仅会使被冷凝蒸汽的分压下降,而且会导致冷凝器的传热系数显著减小。因此,必须从冷凝器中连续抽走空气和不凝性气体。 在标准状态(P0=1.013105Pa,T0=273.15K)下,1kg水蒸汽中约含2.510-5kg的空气。每冷凝1kg蒸汽,由设备、管道等的连接处漏入的空气约为0.01kg。据此可计算出真空蒸发的抽气量。 Calculation of Sucking rate Vacuumed
5.5.6 Calculation of Sucking rate Vacuumed —6.3 Vacuum Evaporation (1) 间壁式冷凝器 当采用间壁式冷凝器时,每小时必须从冷凝器抽走的空气量为 (5-36) 式中Gh——从冷凝器抽走的空气量,kgh-1; Dh——进入冷凝器的蒸汽量,kgh-1。
5.5.6 Calculation of Sucking rate Vacuumed —6.3 Vacuum Evaporation 以标准状态下的空气体积计,每小时应从冷凝器抽走的空气体积为 (5-37) 式中M—空气的平均分子量,常取29gmol-1; R——通用气体常数,8.314 Jmol-1K-1。
5.5.6 Calculation of Sucking rate Vacuumed —6.3 Vacuum Evaporation (2) 直接混合式冷凝器 当采用直接混合式冷凝器时,每小时必须从冷凝器抽走的空气量为 (5-38) 式中 Wh—进入冷凝器的冷却水量,kgh-1。 以标准状态下的空气体积计,每小时应从冷凝器抽走的空气体积为 (5-39)
5.5.6 Calculation of Sucking rate Vacuumed —6.3 Vacuum Evaporation 建立真空时每小时需抽走的空气体积为 (5-40) 式中 ——抽气时间,h; P1——设备内的初始压强,Pa; P2——设备内的终了压强,Pa。
5.5.6 Calculation of Sucking rate Vacuumed —6.3 Vacuum Evaporation 在系统内建立真空后,外界空气会从设备、管道等的各连接处漏入系统,这种气体泄漏一般是无法避免的。因此,在建立真空后仍需继续抽气,以维持系统内的真空度。
5.5.6 Calculation of Sucking rate Vacuumed —6.3 Vacuum Evaporation 维持真空所需的抽气量可用下式计算 (5-41) 式中Gh—真空系统的气体泄漏量,kgh-1;G1—由真空系统容积确定的气体泄漏量,kgh-1;G2—真空系统中各连接件的气体泄漏量之和,kgh-1;K—校正系数。密封性能较好的小型装置,K值取0.5~0.75;密封性能较差及有腐蚀的装置,K值取2~3。
5.5.6 Calculation of Sucking rate Vacuumed 真空系统中常见连接件的气体泄漏量如下表所示: —Vacuum Evaporation 真空系统中常见连接件的气体泄漏量如下表所示:
求出各种能量消耗后,还应考虑输送过程中的损失。通常的做法是将所求得的能量消耗再乘上适当的能耗系数。 Consumption of Energy 求出各种能量消耗后,还应考虑输送过程中的损失。通常的做法是将所求得的能量消耗再乘上适当的能耗系数。 表5-8 能耗系数
通过进一步计算,可确定每吨产品的各种能量消耗定额、每小时的最大用量、日消耗量和年消耗量,最后可编制出能耗一览表,如表5-9所示。 Consumption of Energy 通过进一步计算,可确定每吨产品的各种能量消耗定额、每小时的最大用量、日消耗量和年消耗量,最后可编制出能耗一览表,如表5-9所示。 表5-9 能耗一览表
The End! Thanks!
Energy balance sheet