--------光流法 (Optical Flow) 第八章 基于运动视觉的稠密估计 --------光流法 (Optical Flow)

Slides:



Advertisements
Similar presentations
期末考试作文讲解 % 的同学赞成住校 30% 的学生反对住校 1. 有利于培养我们良好的学 习和生活习惯; 1. 学生住校不利于了解外 界信息; 2 可与老师及同学充分交流有 利于共同进步。 2. 和家人交流少。 在寄宿制高中,大部分学生住校,但仍有一部分学生选 择走读。你校就就此开展了一次问卷调查,主题为.
Advertisements

英语中考复习探讨 如何写好书面表达 宁波滨海学校 李爱娣. 近三年中考试题分析 评分标准 试卷评分与练习 (2009 年书面表达为例 ) 影响给分的因素: 存在问题 书面表达高分技巧 建议.
第七课:电脑和网络. 生词 上网 vs. 网上 我上网看天气预报。 今天早上看了网上的天气预报。 正式 zhèngshì (报告,会议,纪录) 他被这所学校正式录取 大桥已经落成,日内就可以正式通车 落伍 luòw ǔ 迟到 chídào 他怕迟到,六点就起床了.
2014 年上学期 湖南长郡卫星远程学校 制作 13 Getting news from the Internet.
专题八 书面表达.
自衛消防編組任務職責 講 義 This template can be used as a starter file for presenting training materials in a group setting. Sections Right-click on a slide to add.
饮食治疗篇.
-Artificial Neural Network- Hopfield Neural Network(HNN) 朝陽科技大學 資訊管理系 李麗華 教授.
摘要的开头: The passage mainly tells us sth.
3-3 Modeling with Systems of DEs
Euler’s method of construction of the Exponential function
Ⅱ、从方框里选择合适的单词填空,使句子完整通顺。 [ size beef special large yet ]
指導教授:許子衡 教授 報告學生:翁偉傑 Qiangyuan Yu , Geert Heijenk
Mini-SONG & Site testing at Delingha
Population proportion and sample proportion
模式识别 Pattern Recognition
Manifold Learning Kai Yang
Differential Equations (DE)
第十章 基于立体视觉的深度估计.
第二章 共轴球面系统的物像关系 Chapter 2: Object-image relations of coaxial spheric system.
§5.6 Hole-Burning and The Lamb Dip in Doppler- Broadened Gas Laser
Fundamentals of Physics 8/e 27 - Circuit Theory
机器人学基础 第四章 机器人动力学 Fundamentals of Robotics Ch.4 Manipulator Dynamics
Remember the five simple rules to be happy 快樂的五個簡單常規
Interval Estimation區間估計
子博弈完美Nash均衡 我们知道,一个博弈可以有多于一个的Nash均衡。在某些情况下,我们可以按照“子博弈完美”的要求,把不符合这个要求的均衡去掉。 扩展型博弈G的一部分g叫做一个子博弈,如果g包含某个节点和它所有的后继点,并且一个G的信息集或者和g不相交,或者整个含于g。 一个Nash均衡称为子博弈完美的,如果它在每.
塑膠材料的種類 塑膠在模具內的流動模式 流動性質的影響 溫度性質的影響
消費者偏好與效用概念.
增强型MR可解决 临床放射成像的 多供应商互操作性问题
Neutron Stars and Black Holes 中子星和黑洞
基于课程标准的校本课程教学研究 乐清中学 赵海霞.
GRANT UNION HIGH SCHOOL
A high payload data hiding scheme based on modified AMBTC technique
A SMALL TRUTH TO MAKE LIFE 100%
VIDEO COMPRESSION & MPEG
校園地震預警系統的建置與應用 林沛暘.
Have you read Treasure Island yet?
Remember the five simple rules to be happy 快樂的五個簡單常規
高性能计算与天文技术联合实验室 智能与计算学部 天津大学
Mechanics Exercise Class Ⅰ
Guide to a successful PowerPoint design – simple is best
3.5 Region Filling Region Filling is a process of “coloring in” a definite image area or region. 2019/4/19.
Safety science and engineering department
中国科学技术大学计算机系 陈香兰 2013Fall 第七讲 存储器管理 中国科学技术大学计算机系 陈香兰 2013Fall.
Common Qs Regarding Earnings
中央社新聞— <LTTC:台灣學生英語聽說提升 讀寫相對下降>
林一平 講座教授 資訊學院院長 新竹國立交通大學
成才之路 · 英语 人教版 · 必修1 路漫漫其修远兮 吾将上下而求索.
中考英语阅读理解 完成句子命题与备考 宝鸡市教育局教研室 任军利
Inter-band calibration for atmosphere
高考应试作文写作训练 5. 正反观点对比.
Remember the five simple rules to be happy 快樂的五個簡單常規
Remember the five simple rules to be happy 快樂的五個簡單常規
美國亞利桑納州Eurofresh農場的晨曦
Q & A.
Nucleon EM form factors in a quark-gluon core model
Remember the five simple rules to be happy 快樂的五個簡單常規
磁共振原理的临床应用.
Mechanics Exercise Class Ⅱ
名词从句(2).
English article read(英文文章閱讀)
第十四章 二维运动估计 图像动态变化可能由摄象机运动、物体运动或光照改变引起,也可能由物体结构、大小或形状变化引起.
动词不定式(6).
Class imbalance in Classification
自主练悟 ①(2017·桂林市联考)To them, life is a competition — they have to do _______ (good) than their peers to be happy. ②(2017·菏泽市模拟)People who forgive.
二项式的分解因式 Factoring binomials
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
Principle and application of optical information technology
Train Track and Children
BESIII MDC 模拟与调试 袁野 年粒子物理实验计算软件与技术研讨会 威海.
Presentation transcript:

--------光流法 (Optical Flow) 第八章 基于运动视觉的稠密估计 --------光流法 (Optical Flow)

稠密运动估计 2018/12/1 CV:Motion

光流法 运动场(motion field) 像素运动矢量 光流(optical flow) 图像亮度模式的表观运动 2018/12/1 CV:Motion

2018/12/1 CV:Motion

8.1 二维光流运动估计 根据图像亮度模式的变化估计物体的运动 1. 基于梯度的方法 (Gradient-based) Differential Methods 2. 块匹配方法 (Block Matching) Region Matching 2018/12/1 CV:Motion

二维光流运动估计 关键性假设 假设各幅图像的亮度具有一致性 运动较小 Time = t Time = t+dt

8.1.1基于梯度的方法 基础性假设 点的亮度变化仅由运动引起 Taylor展开 光流约束方程 物理意义:如果一个固定的观察者观察一幅活动的场景,那么所得图象上某点灰度的(一阶)时间变化率是场景亮度变化率与该点运动速度的乘积。 2018/12/1 CV:Motion

Tracking in the 1D case: ?

Tracking in the 1D case: Temporal derivative Spatial derivative Assumptions: Brightness constancy Small motion

Tracking in the 1D case: Iterating helps refining the velocity vector Temporal derivative at 2nd iteration Can keep the same estimate for spatial derivative Converges in about 5 iterations

孔径问题(Aperture problem)

孔径问题(Aperture problem) Motion along just an edge is ambiguous

孔径问题(Aperture problem)

孔径问题(Aperture problem) 需要足够的图像梯度信息,才能进行准确的估计 对于无纹理区域或者沿着边缘方向无法使用 只能在角点和纹理区域使用 图像中的每一点上有两个未知数u 和v ,但只有一个方程,因此,只使用一个点上的信息是不能确定光流的. 最优化问题,迭代求解 增加约束,使问题可解 2018/12/1 CV:Motion

基础假设: * Slide from Michael Black, CS143 2003

基础假设: * Slide from Michael Black, CS143 2003

From 1D to 2D tracking The Math is very similar: Aperture problem Window size here ~ 11x11

求解孔径问题 How to get more equations for a pixel? Basic idea: impose additional constraints most common is to assume that the flow field is smooth locally one method: pretend the pixel’s neighbors have the same (u,v) If we use a 5x5 window, that gives us 25 equations per pixel! * From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

RGB version How to get more equations for a pixel? Basic idea: impose additional constraints most common is to assume that the flow field is smooth locally one method: pretend the pixel’s neighbors have the same (u,v) If we use a 5x5 window, that gives us 25*3 equations per pixel! * From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Lukas-Kanade flow Prob: we have more equations than unknowns Solution: solve least squares problem minimum least squares solution given by solution (in d) of: The summations are over all pixels in the K x K window This technique was first proposed by Lukas & Kanade (1981) described in Trucco & Verri reading * From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Conditions for solvability Optimal (u, v) satisfies Lucas-Kanade equation When is This Solvable? ATA should be invertible ATA should not be too small due to noise eigenvalues l1 and l2 of ATA should not be too small ATA should be well-conditioned l1/ l2 should not be too large (l1 = larger eigenvalue) * From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Eigenvectors of ATA Suppose (x,y) is on an edge. What is ATA? gradients along edge all point the same direction gradients away from edge have small magnitude is an eigenvector with eigenvalue What’s the other eigenvector of ATA? let N be perpendicular to N is the second eigenvector with eigenvalue 0 The eigenvectors of ATA relate to edge direction and magnitude Suppose M = vv^T . What are the eigenvectors and eigenvalues? Start by considering Mv * From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Edge large gradients, all the same large l1, small l2 * From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Low texture region gradients have small magnitude small l1, small l2 * From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

High textured region gradients are different, large magnitudes large l1, large l2 * From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Observation This is a two image problem BUT Can measure sensitivity by just looking at one of the images! This tells us which pixels are easy to track, which are hard very useful later on when we do feature tracking... * From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

误差分析 When our assumptions are violated What are the potential causes of errors in this procedure? Suppose ATA is easily invertible Suppose there is not much noise in the image When our assumptions are violated Brightness constancy is not satisfied The motion is not small A point does not move like its neighbors window size is too large what is the ideal window size? * From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

提高精度 Recall our small motion assumption It-1(x,y) It-1(x,y) This is not exact To do better, we need to add higher order terms back in: It-1(x,y) This is a polynomial root finding problem Can solve using Newton’s method Also known as Newton-Raphson method Lukas-Kanade method does one iteration of Newton’s method Better results are obtained via more iterations * From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

迭代更新 Iterative Lukas-Kanade Algorithm Estimate velocity at each pixel by solving Lucas-Kanade equations Warp I(t-1) towards I(t) using the estimated flow field - use image warping techniques Repeat until convergence * From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

降低分辨率 * From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Coarse-to-fine optical flow estimation Gaussian pyramid of image It-1 Gaussian pyramid of image I image I image It-1 u=10 pixels u=5 pixels u=2.5 pixels u=1.25 pixels image It-1 image I

Coarse-to-fine optical flow estimation Gaussian pyramid of image It-1 Gaussian pyramid of image I image I image It-1 run iterative L-K warp & upsample run iterative L-K . image J image I

Multi-resolution Lucas Kanade Algorithm

(2) Horn-Schunck方法 增加全局平滑性约束(smoothness) 光流约束 全局平滑性约束 2018/12/1 CV:Motion

Horn-Schunck方法 用Gauss-Seidel方法迭代求解 优化目标 2018/12/1 CV:Motion

Horn-Schunck 方法 应用变分法求解全局能量优化问题

Horn-Schunck 方法

Horn-Schunck 方法 迭代方法 可以产生更高密度的运动场 可以填补无纹理区域 更容易受到噪声影响,需要做预处理

(3) Nagel方法 基于二阶导数的方法 面向平滑的约束,处理遮挡 Gauss-Seidel 迭代求解 2018/12/1 CV:Motion

2018/12/1 CV:Motion

Generalization * From Marc Pollefeys COMP 256 2003

Generalization

* From Marc Pollefeys COMP 256 2003

* From Marc Pollefeys COMP 256 2003

Affine Flow * Slide from Michael Black, CS143 2003