Applied Hydrology Climate Change and Hydrology

Slides:



Advertisements
Similar presentations
Chapter 2 Combinatorial Analysis 主講人 : 虞台文. Content Basic Procedure for Probability Calculation Counting – Ordered Samples with Replacement – Ordered.
Advertisements

期末考试作文讲解 % 的同学赞成住校 30% 的学生反对住校 1. 有利于培养我们良好的学 习和生活习惯; 1. 学生住校不利于了解外 界信息; 2 可与老师及同学充分交流有 利于共同进步。 2. 和家人交流少。 在寄宿制高中,大部分学生住校,但仍有一部分学生选 择走读。你校就就此开展了一次问卷调查,主题为.
Basic concepts of structural equation modeling
Measures of location and dispersion
綠色創意伙伴Green Creative Partner
二維品質模式與麻醉前訪視滿意度 中文摘要 麻醉前訪視,是麻醉醫護人員對病患提供麻醉相關資訊與服務,並建立良好醫病關係的第一次接觸。本研究目的是以Kano‘s 二維品質模式,設計病患滿意度問卷,探討麻醉前訪視內容與病患滿意度之關係,以期分析關鍵品質要素為何,作為提高病患對醫療滿意度之參考。 本研究於台灣北部某醫學中心,通過該院人體試驗委員會審查後進行。對象為婦科排程手術住院病患,其中實驗組共107位病患,在麻醉醫師訪視之前,安排先觀看麻醉流程衛教影片;另外對照組111位病患,則未提供衛教影片。問卷於麻醉醫師
B型肝炎帶原之肝細胞癌患者接受肝動脈栓塞治療後血液中DNA之定量分析
探討強迫症患者之焦慮、憂鬱症狀與自殺意念之相關
第三章 隨機變數.
Chapter 8 Liner Regression and Correlation 第八章 直线回归和相关
Chaoping Li, Zhejiang University
綠色創意伙伴Green Creative Partner
Operating System CPU Scheduing - 3 Monday, August 11, 2008.
3-3 Modeling with Systems of DEs
Homework 4 an innovative design process model TEAM 7
Platypus — Indoor Localization and Identification through Sensing Electric Potential Changes in Human Bodies.
Thinking of Instrumentation Survivability Under Severe Accident
指導教授:許子衡 教授 報告學生:翁偉傑 Qiangyuan Yu , Geert Heijenk
Population proportion and sample proportion
Descriptive statistics
模式识别 Pattern Recognition
2010 NTU International Conference on Finance
次数依变量模型 (Models for Count Outcomes)
華爾街的物理學家 混沌碰上華爾街.
Continuous Probability Distributions
Properties of Continuous probability distributions
Sampling Theory and Some Important Sampling Distributions
Digital Terrain Modeling
HLA - Time Management 陳昱豪.
製程能力分析 何正斌 教授 國立屏東科技大學工業管理學系.
第一章 敘述統計學.
Stochastic Storm Rainfall Simulation
二元隨機變數(Bivariate Random Variables)
Interval Estimation區間估計
參加2006 SAE年會-與會心得報告 臺灣大學機械工程系所 黃元茂教授
塑膠材料的種類 塑膠在模具內的流動模式 流動性質的影響 溫度性質的影響
辐射带 1958年:探险者一号、探险者三号和苏联的卫星三号等科学卫星被发射后科学家出乎意料地发现了地球周围强烈的、被地磁场束缚的范艾伦辐射带(内辐射带)。 这个辐射带由能量在10至100MeV的质子组成,这些质子是由于宇宙线与地球大气上层撞击导致的中子衰变产生的,其中心在赤道离地球中心约1.5地球半径。
The Nature and Scope of Econometrics
模式识别 Pattern Recognition
Version Control System Based DSNs
Monte Carlo模拟 引言(introduction) 均匀随机数的产生(Random number generation)
实验数据处理方法 第二部分:Monte Carlo模拟
校園地震預警系統的建置與應用 林沛暘.
Mechanics Exercise Class Ⅰ
資料整理與次數分配 Organizing Data 社會統計(上).
相關統計觀念復習 Review II.
Design and Analysis of Experiments Final Report of Project
Safety science and engineering department
Common Qs Regarding Earnings
Simple Regression (簡單迴歸分析)
华南师范大学生命科学学院05级技术(2)班 刘俏敏
Inter-band calibration for atmosphere
績效考核 一.績效考核: 1.意義 2.目的 3.影響績效的因素 二.要考核什麼? 三.誰來負責考核? 四.運用什麼工具與方法?
The viewpoint (culture) [观点(文化)]
第二单元 语言差异、汉英对比 曾昭涛 2010年.
五.連續變數及常態分佈 (Continuous Random Variables and Normal Distribution)
Q & A.
Statistics Chapter 1 Introduction Instructor: Yanzhi Wang.
磁共振原理的临床应用.
An Overview of Labor Market 2012
名词从句(2).
实验数据处理方法 第二部分:Monte Carlo模拟
定语从句(11).
动词不定式(6).
Monte Carlo模拟 引言(introduction) 均匀随机数的产生(Random number generation)
Class imbalance in Classification
Fei Chen and Jimy Dudhia April 2001 (Monthly Weather Review) 報告:陳心穎
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
Principle and application of optical information technology
Gaussian Process Ruohua Shi Meeting
Presentation transcript:

Applied Hydrology Climate Change and Hydrology Professor Ke-Sheng Cheng Department of Bioenvironmental Systems Engineering National Taiwan University

Global Circulation Models (GCMs) Computer models that are capable of producing a realistic representation of the climate, and can respond to the most obvious quantifiable perturbations. Derived based on weather forecasting models. 12/2/2018 Lab for Remote Sensing Hydrology and Spatial Modeling Dept of Bioenvironmental Systems Eng, NTU

Weather forecasting models The physical state of the atmosphere is updated continually drawing on observations from around the world using surface land stations, ships, buoys, and in the upper atmosphere using instruments on aircraft, balloons and satellites. The model atmosphere is divided into 70 layers and each level is divided up into a network of points about 40 km apart. 12/2/2018 Lab for Remote Sensing Hydrology and Spatial Modeling Dept of Bioenvironmental Systems Eng, NTU

Standard weather forecasts do not predict sudden switches between stable circulation patterns well. At best they get some warning by using statistical methods to check whether or not the atmosphere is in an unpredictable mood. This is done by running the models with slightly different starting conditions and seeing whether the forecasts stick together or diverge rapidly. 12/2/2018 Lab for Remote Sensing Hydrology and Spatial Modeling Dept of Bioenvironmental Systems Eng, NTU

This ensemble approach provides a useful indication of what modelers are up against when they seek to analyses the response of the global climate to various perturbations and to predict the course it will following in the future. The GCMs cannot represent the global climate in the same details as the numerical weather predictions because they must be run for decades and even centuries ahead in order to consider possible changes. 12/2/2018 Lab for Remote Sensing Hydrology and Spatial Modeling Dept of Bioenvironmental Systems Eng, NTU

Challenges for potential GCMs improvement Typically, most GCMs now have a horizontal resolution of between 125 and 400 km, but retain much of the detailed vertical resolution, having around 20 levels in the atmosphere. Challenges for potential GCMs improvement Modeling clouds formation and distribution Tropical storms (typhoons and hurricanes) Land-surface processes Winds, waves and currents Other greenhouse gases 12/2/2018 Lab for Remote Sensing Hydrology and Spatial Modeling Dept of Bioenvironmental Systems Eng, NTU

GCMs 12/2/2018 Lab for Remote Sensing Hydrology and Spatial Modeling Dept of Bioenvironmental Systems Eng, NTU

From GCMs to hydrological process modeling Study of hydrological processes requires spatial and temporal resolutions which are much smaller than GCMs can offer. Downscaling techniques have been developed to downscale GCM outputs to desired scales. Dynamic downscaling Statistical downscaling 12/2/2018 Lab for Remote Sensing Hydrology and Spatial Modeling Dept of Bioenvironmental Systems Eng, NTU

Weather Generator of daily rainfall simulation Markov chain for rain day/no-rain day simulation Exponential distribution for daily rainfall simulation. 12/2/2018 Lab for Remote Sensing Hydrology and Spatial Modeling Dept of Bioenvironmental Systems Eng, NTU

(童慶斌教授課程講義) 12/2/2018 Lab for Remote Sensing Hydrology and Spatial Modeling Dept of Bioenvironmental Systems Eng, NTU

Effect of climate change on storm characteristics Storm types Convective storms Typhoons MCS (Mei-yu) Frontal systems Assessed based on MRI high-resolution outpots (dynamic downscaling) 12/2/2018 Lab for Remote Sensing Hydrology and Spatial Modeling Dept of Bioenvironmental Systems Eng, NTU

探討各降雨類型之統計特性且評估氣候變遷下之差異 TCCIP Team 3 蘇元風博士

緣起 過去探討氣候變遷對降雨特性影響之相關研究,多以年降雨量、季節降雨量或月降雨量為研究對象。 許多水資源工程規劃、設計,或是水庫供水調度而言,事件降雨特性至關重要。 逕流演算 入庫流量預報 水利工程設施規劃 動力降尺度 (例MRI) 時雨量資料

降雨事件之門檻與統計參數 門檻 統計參數 時雨量值(例:2mm/hr) 平均次數 降雨延時(例:12 hours) 總降雨量 降雨延時 降雨事件間隔時距

事件降雨特性 序率暴雨模擬模式 後續水文需求: 頻率分析 逕流演算 入庫流量預報 水利工程設計規劃 … 水利署相關計畫之使用 氣候變遷下台灣地區地下水資源補注之影響評估(台大) 強化台灣西北及東北地區因應氣候變遷海岸災害調適能力研究計畫(1/2)(成大) 台灣地區各水資源分區因應氣候變遷水資源管理調適能力綜合研究 (台大) 強化中部水資源分區因應氣候變遷水資源管理調適能力研究(交大) 氣候變遷對中部地區水旱災災害防救衝擊評估及調適策略擬定(1/2)(成大)

MRI-WRF-5km資料是否能重現觀測資料之統計特性? (基期1979-2003) 測站觀測時雨量 (基期1979-2003) MRI-WRF-5km資料是否能重現觀測資料之統計特性? 事件降雨特性參數 事件降雨特性參數 降雨門檻 降雨門檻 事件降雨特性參數改變率 (近未來) (世紀末) 比較 MRI-WRF-5km時雨量 (近未來2015-2039) MRI-WRF-5km時雨量 (世紀末2075-2099)

暴雨事件切割門檻(測站資料) 採用降雨事件間距門檻值,濾除較小的降雨事件 降雨類型切割 降雨延時為1 小時或時雨量低於0.5mm的小事件移除。 降雨類型切割 降雨類型 時期 門檻 第一類 (梅雨) 5月-6月 降雨延時 > 3小時 時雨量 > 0.5 mm/hr 第二類 (颱風) 7月-10月 降雨延時 > 8小時 時雨量 > 2.5 mm/hr 第三類 (對流) 3 小時 > 降雨延時 ≤ 8小時 第四類 (鋒面) 11月~隔年4月 降雨延時 > 4小時

資料說明 測站資料 MRI-WRF-5km 時間:1979-2003時雨量 站數:84站 空間解析度: 5km 1979-2003 2015-2039 2075-2099 時雨量

事件數 第二類 (颱風) 7月-10月 降雨延時 > 8小時 時雨量 > 2.5 mm/hr Gauges MRI-WRF 基期 時期 每年颱風次數(兆尊) 每年事件數 測站(1979-2003) - 3.04 1979-2003 3.52 3.39 2015-2039 3.24 2075-2099 3.28 3.32 Gauges MRI-WRF 基期 近未來 世紀末

平均延時 第二類 (颱風) 7月-10月 降雨延時 > 8小時 時雨量 > 2.5 mm/hr Gauges MRI-WRF 基期 近未來 世紀末

平均總降雨量 第二類 (颱風) 7月-10月 降雨延時 > 8小時 時雨量 > 2.5 mm/hr Gauges MRI-WRF 基期 近未來 世紀末

事件間隔 第二類 (颱風) 7月-10月 降雨延時 > 8小時 時雨量 > 2.5 mm/hr

事件數 第四類 (鋒面) 11月~隔年4月 降雨延時 > 4小時 時雨量 > 0.5 mm/hr Gauges 時期 每年事件數 測站(1979-2003) 7.58 1979-2003 6.94 2015-2039 7.15 2075-2099 8.37 降雨延時>4hrs 時雨量>0.5mm 降雨延時>4hrs 時雨量>2mm Gauges MRI-WRF 基期 近未來 世紀末

平均延時 第四類 (鋒面) 11月~隔年4月 降雨延時 > 4小時 時雨量 > 0.5 mm/hr Gauges 降雨延時>4hrs 時雨量>0.5mm 降雨延時>4hrs 時雨量>2mm Gauges MRI-WRF 基期 近未來 世紀末

平均總降雨量 第四類 (鋒面) 11月~隔年4月 降雨延時 > 4小時 時雨量 > 0.5 mm/hr Gauges 降雨延時>4hrs 時雨量>0.5mm 降雨延時>4hrs 時雨量>2mm Gauges MRI-WRF 基期 近未來 世紀末

事件間隔 第四類 (鋒面) 11月~隔年4月 降雨延時 > 4小時 時雨量 > 0.5 mm/hr 降雨延時>4hrs

事件數 第一類 (梅雨) 5月-6月 降雨延時 > 3小時 時雨量 > 0.5 mm/hr Gauges MRI-WRF 基期 時期 每年事件數 測站(1979-2003) 6.51 1979-2003 7.16 2015-2039 6.89 2075-2099 7.55 降雨延時>3hrs 時雨量>0.5mm 降雨延時>3hrs 時雨量>2mm Gauges MRI-WRF 基期 近未來 世紀末

平均延時 第一類 (梅雨) 5月-6月 降雨延時 > 3小時 時雨量 > 0.5 mm/hr Gauges MRI-WRF 基期 降雨延時>3hrs 時雨量>0.5mm 降雨延時>3hrs 時雨量>2mm Gauges MRI-WRF 基期 近未來 世紀末

平均總降雨量 第一類 (梅雨) 5月-6月 降雨延時 > 3小時 時雨量 > 0.5 mm/hr Gauges 降雨延時>3hrs 時雨量>0.5mm 降雨延時>3hrs 時雨量>2mm Gauges MRI-WRF 基期 近未來 世紀末

事件間隔 第一類 (梅雨) 5月-6月 降雨延時 > 3小時 時雨量 > 0.5 mm/hr 降雨延時>3hrs

事件數 第三類 (對流) 7月-10月 3小時<降雨延時 ≤ 8小時 時雨量 > 2.5 mm/hr Gauges 時期 每年事件數 測站(1979-2003) 3.10 1979-2003 6.75 2015-2039 6.51 2075-2099 6.36 Gauges MRI-WRF 基期 近未來 世紀末

平均延時 第三類 (對流) 7月-10月 3小時<降雨延時 ≤ 8小時 時雨量 > 2.5 mm/hr Gauges MRI-WRF 基期 近未來 世紀末

平均總降雨量 第三類 (對流) 7月-10月 3小時<降雨延時 ≤ 8小時 時雨量 > 2.5 mm/hr Gauges MRI-WRF 基期 近未來 世紀末

事件間隔

結論 MRI-WRF-5km所得到的降雨參數大致上能夠反映出測站資料所得降雨參數之空間分布特性,尤其是颱風與鋒面兩類降雨類型。

後續工作規劃 將MRI-WRF-5km資料所決定之降雨門檻值應用於MRI-WRF-5km所有網格點。 計算並繪製降雨參數改變率分布圖。

Stochastic storm rainfall simulation model (SSRSM) Occurrences of storm events and time distribution of the event-total rainfalls are random in nature. Physical parameters based # of events in a certain period Duration Event-total depths Time distribution (hyetograph) Rainfall intermittence 12/2/2018 Lab for Remote Sensing Hydrology and Spatial Modeling Dept of Bioenvironmental Systems Eng, NTU

Modeling occuerrences of storms Number of storm events in a certain period Occurrences of rare events like typhoons can be modeled by the Poisson process. Inter-event-time has an exponential distribution. Occurrences of other types of storms which are more frequently occurred may not be well characterized by the Poisson process. 12/2/2018 Lab for Remote Sensing Hydrology and Spatial Modeling Dept of Bioenvironmental Systems Eng, NTU

Duration and total depth Generally speaking, storms of longer durations draw higher amount of total rainfalls. Event-total rainfall (D) and duration (tr) are correlated and can be modeled by a joint distribution. (D, tr) of typhoons are modeled by a bivariate gamma distribution. Bivariate distribution of different families of marginal densities may be possible. 12/2/2018 Lab for Remote Sensing Hydrology and Spatial Modeling Dept of Bioenvironmental Systems Eng, NTU

Conversion of BVG correlation and BVN correlation. Simulation of bivariate gamma distribution – A frequency factor based approach Transforming a bivariate gamma distribution to a corresponding bivariate standard normal distribution. Conversion of BVG correlation and BVN correlation. 12/2/2018 Lab for Remote Sensing Hydrology and Spatial Modeling Dept of Bioenvironmental Systems Eng, NTU

Gamma density

Rationale of BVG simulation using frequency factor From the view point of random number generation, the frequency factor can be considered as a random variable K, and KT is a value of K with exceedence probability 1/T. Frequency factor of the Pearson type III distribution can be approximated by Standard normal deviate [A]

Assume two gamma random variables X and Y are jointly distributed. The two random variables are respectively associated with their frequency factors KX and KY . Equation (A) indicates that the frequency factor KX of a random variable X with gamma density is approximated by a function of the standard normal deviate and the coefficient of skewness of the gamma density.

Flowchart of BVG simulation (1/2)

Flowchart of BVG simulation (2/2)

[B]

Time distribution of event-total rainfall The duration is divided into n intervals of equal length. Each interval is associated with a rainfall percentage. Based on the simple scaling assumption, rainfall percentages of the i-th interval (i = 1, …, n) of all events (of the same storm type) form a random sample of a common distribution. Rainfall percentages of individual intervals form a random process. Gamma-Markov process 12/2/2018 Lab for Remote Sensing Hydrology and Spatial Modeling Dept of Bioenvironmental Systems Eng, NTU

Modeling the dimensionless hyetograph Rainfall percentages can only assume values between 0 and 100. The sum of all rainfall percentages should equal 100%. Constrained gamma-Markov simulation Gamma distribution will generate random numbers exceeding 100%. Truncated gamma distribution (truncated from above) The truncation threshold (cut off value) is significantly lower than 100%. 12/2/2018 Lab for Remote Sensing Hydrology and Spatial Modeling Dept of Bioenvironmental Systems Eng, NTU

Determining parameters of the truncated gamma distributions. Observations of rainfall percentages are samples of truncated gamma distributions. Determining parameters of the truncated gamma distributions. Scale parameter, shape parameter and the truncation threshold. Gamma-Markov simulation is based on simulation of a bivariate truncated-gamma distribution. Determing the correlation coefficient of the parent bivariate gamma distribution. 12/2/2018 Lab for Remote Sensing Hydrology and Spatial Modeling Dept of Bioenvironmental Systems Eng, NTU