第二章 基本放大电路 2.1 基本放大电路的组成 放大电路的组成原则 (1) 晶体管必须工作在放大区。发射结正偏,集 电结反偏。

Slides:



Advertisements
Similar presentations
模拟电子技术基础 信息科学与工程学院·基础电子教研室.
Advertisements

第三章 场效应管放大器 3.1 场效应管 3.2 场效应管放大电路 绝缘栅场效应管 结型场效应管 效应管放大器的静态偏置
第四章 场效应管放大电路 场效应管是一种利用电场效应来控制电流的一种半导体器件,是仅由一种载流子参与导电的半导体器件。从参与导电的载流子来划分,它有电子作为载流子的N沟道器件和空穴作为载流子的P沟道器件。 场效应管: 结型 N沟道 P沟道 MOS型 增强型 耗尽型.
3.1多级放大电路 3.2 差动式放大电路 3.3 功率放大电路 3.4 集成运算放大器简介 
触电危害与急救 主讲人: 洪雪芹 电话: 中原油田培训中心.
第2章 电路的分析方法 2.1 电源两种模型及其等效变换 2.2 基本定律 2.3 支路电流法 2.4 节点电压法 2.5 叠加原理
第7讲 第2章电路的分析方法 受控电源电路的分析 海南风光.
主要内容: 1.场效应管放大器 2.多级放大器的偶合方式 3.组容耦合多级放大器 4.运算放大器电路基础
7.2 其他放大电路 共集电极放大电 共基极放大电 多级放大电路 场效应管放大电路.
第1章 常用半导体器件 1.1 半导体基础知识 1.2 半导体二极管 1.3 半导体三极管 1.4 场效应管.
第 5 章 低频功率放大器.
第10章 常用半导体器件 本章主要内容 本章主要介绍半导体二极管、半导体三极管和半导体场效晶体管的基本结构、工作原理和主要特征,为后面将要讨论的放大电路、逻辑电路等内容打下基础 。
第五章 常用半导体器件 第一节 PN结及其单向导电性 第二节 半导体二极管 第三节 特殊二极管 第四节 晶体管 第五节 场效应晶体管
+UCC RB1 RC C2 C1 RL RB2 C0 ui RE uo CE
3 半导体三极管及放大电路基础 3.1 半导体三极管(BJT) 3.2 共射极放大电路 3.3 图解分析法 3.4 小信号模型分析法
第5章 振幅调制、解调及混频 5.1 概述 5.2 振幅调制原理及特性 5.3 振幅调制电路 5.4 调幅信号的解调
3.14 双口网络互联 1、级联 i1a i2a i1b i2b Na Nb i1 i1a i2a i1b i2b i2 Na Nb + +
课程小论文 ——BJT和FET的区别与联系
第三章 晶体管及其小信号放大(1).
媒质 4.1 半导体物理基础 导体:对电信号有良好的导通性,如绝大多数金属,电解液,以及电离气体。
第四章 场效应管放大电路 2017年4月7日.
第 10 章 基本放大电路 10.1 共发射极放大电路的组成 10.2 共发射极放大电路的分析 10.3 静态工作点的稳定
高级维修电工 理论培训教材 2008.05.
晶体管及其小信号放大 -共集(电压跟随器) 和共基放大电路 -共源(电压跟随器).
第11章 基本放大电路 本章主要内容 本章主要介绍共发射极交流电压放大电路、共集电极交流电压放大电路和差分放大电路的基本组成、基本工作原理和基本分析方法,为学习后面的集成运算放大电路打好基础。
第二章 基本放大电路 2.1放大电路概述 2.2基本放大电路的工作原理 2.3图解分析法 2.4微变等效电路分析法 2.5静态工作点稳定电路
第7章 基本放大电路 放大电路的功能是利用三极管的电流控制作用,或场效应管电压控制作用,把微弱的电信号(简称信号,指变化的电压、电流、功率)不失真地放大到所需的数值,实现将直流电源的能量部分地转化为按输入信号规律变化且有较大能量的输出信号。放大电路的实质,是一种用较小的能量去控制较大能量转换的能量转换装置。
第六章 基本放大电路 第一节 基本交流放大电路的组成 第二节 放大电路的图解法 第三节 静态工作点的稳定 第四节 微变等效电路法
工作原理 静态工作点 RB +UCC RC C1 C2 T IC0 由于电源的存在,IB0 IC IB ui=0时 IE=IB+IC.
(1)放大区 (2)饱和区 (3)截止区 晶体管的输出特性曲线分为三个工作区: 发射结处于正向偏置;集电结处于反向偏置
——2016年5月语音答疑—— 模拟电子技术基础 ——多级放大电路 时 间: :00 — 20:30.
电 子 第四节 负反馈放大电路的计算 一、深度负反馈条件下放大倍数 的近似计算 二、方块分析法.
宁波兴港职业高级中学 题目:放大器的静态分析 电工电子课件 主讲:王铖 电工组 《电子技术基础》
第11章 技能训练及应用实践 11.1电阻器、电容器的识别与检测及万用表的使用
第十四章 放大电路中的负反馈.
实验一 共射极单管放大器 图1-1 共射极单管放大器实验电路.
电工电子技术基础 主编 李中发 制作 李中发 2003年7月.
稳压二极管 U I + - UZ IZ IZ UZ IZmax
第八章 反馈放大电路 2018年5月14日.
第2章 电路的分析方法 2.1 电阻串并联联接的等效变换 2.2 电阻星型联结与三角型联结的等效变换 2.3 电压源与电流源及其等效变换
第12章 基本放大电路.
放大电路中的负反馈 主讲教师:李国国 北京交通大学电气工程学院 电工电子基地.
退出 第 2 章 放大器基础.
第2章 电路的分析方法 2.1 电阻串并联联接的等效变换 2.2 电阻星型联结与三角型联结的等效变换 2.3 电压源与电流源及其等效变换
第16章 集成运算放大器 16.1 集成运算放大器的简单介绍 16.2 运算放大器在信号运算方面的应用
第三节 基本放大电路.
电工电子技术实验 电工电子教学部.
第二章 逻辑门电路 2.1 二极管的开关特性及二极管门电路 2.2 三极管的开关特性及反相器门电路 2.3 TTL逻辑门电路
第 3 章 放大电路基础 3.1 放大电路的基础知识 3.2 三种基本组态放大电路 3.3 差分放大电路 3.4 互补对称功率放大电路
第三章 多级放大和功率放大电路 3.1 多级放大电路 3.2 放大电路的频率特性 3.3 功率放大电路 3.4 放大电路工程应用技术
第5章 直流稳压电源 概述 直流稳压电源的组成和功能 5.1 整流电路 5.2 滤波电路 5.3 硅稳压管稳压电路
第五章 含有运算放大器的电阻电路 5.1 运算放大器的电路模型 5.2 含有运算放大器的电路分析.
第三章 场效应管放大电路 3.1 结型场效应管 3.2 绝缘栅场效应管 3.3 场效应管的主要参数 3.4 场效应管的特点
第二章 基本放大器 2.1 放大电路的基本概念及性能指标 2.2 共发射极基本放大电路 2.3 放大器工作点的稳定
第三章 场效应管放大器 结型场效应管(JFET) 绝缘栅型场效应管(MOSFET) JFET的结构和工作原理 JFET的特性曲线
PowerPoint 电子科技大学 幻灯片模板.
放大电路的分析与计算.
国家工科电工电子基础教学基地 国 家 级 实 验 教 学 示 范 中 心
第3章 集成运算放大器及其应用 3.1 集成运算放大器简介 3.2 差动放大器 3.3 理想运算放大器及其分析依据
电子技术基础.
放大器的图解分析法(2) -----动态分析 您清楚吗? ---孙 肖 子.
第六章 模拟集成单元电路.
4 半导体三极管 及放大电路基础 4.1 半导体三极管(BJT) 4.2 共射极放大电路 4.3 图解分析法 4.4 小信号模型分析法
实验三 电流串联负反馈放大器的焊接与测试 一、实验目的 1.学会测量放大器输入输出阻抗的方法。 2.了解电流串联对负反馈放大器性能的影响。
电工与模数电技术 2015级注册电气工程师考培 参考书目
9.3 静态工作点的稳定 放大电路不仅要有合适的静态工作点,而且要保持静态工作点的稳定。由于某种原因,例如温度的变化,将使集电极电流的静态值 IC 发生变化,从而影响静态工作点的稳定。 上一节所讨论的基本放大电路偏置电流 +UCC RC C1 C2 T RL RE + CE RB1 RB2 RS ui.
第六章 電晶體放大電路 6-1 電晶體放大器工作原理 6-2 電晶體交流等效電路 6-3 共射極放大電路 6-4 共集極放大電路
第18章 正弦波振荡电路 18.1 自激振荡 18.2 RC振荡电路 18.3 LC振荡电路.
第二章 放大电路的基本原理 2.1 放大的概念 2.2 单管共发射极放大电路 2.3 放大电路的主要技术指标 2.4 放大电路的基本分析方法
模拟电子技术基础 多媒体课件 主编:马永兵.
Presentation transcript:

第二章 基本放大电路 2.1 基本放大电路的组成 2.1.1 放大电路的组成原则 (1) 晶体管必须工作在放大区。发射结正偏,集 电结反偏。 第二章 基本放大电路 2.1 基本放大电路的组成 2.1.1 放大电路的组成原则 (1) 晶体管必须工作在放大区。发射结正偏,集 电结反偏。 (2) 输入回路将变化的电压转化成变化的基极电流 (3) 输出回路将变化的集电极电流转化成变化的 集电极电压,经电容耦合只输出交流信号。

2.1.2 放大电路中元件的作用 信号源 负载 EC RS es RB EB RC C1 C2 T + – RL ui uo uBE uCE iC iB iE 信号源 负载

EC RS es RB EB RC C1 C2 T + – RL ui uo uBE uCE iC iB iE +UCC RS es RB RC C1 C2 T + – RL ui uo uBE uCE iC iB iE 共发射极基本电路 单电源供电时常用的画法

2.1.3 各量的规范表示法 P22 2.2 放大电路的主要技术指标 (P22—24) 电压放大倍数 输入电阻 输出电阻 通频带 最大不失真输出幅度

2.3 共射极放大电路 2.2.1 直流通路和交流通路概念和画法 1、直流通路:无输入信号时电流(直流电流) 的通路。(用来计算静态工作点) 2.3 共射极放大电路 2.2.1 直流通路和交流通路概念和画法 1、直流通路:无输入信号时电流(直流电流) 的通路。(用来计算静态工作点) 2、交流通路:有输入信号时交流分量(变化量) 的通路, (用来计算电压放大倍数、输入电阻、 输出电阻等)

对直流信号电容 C 可看作开路(即将电容断开) 例:画出下图放大电路的直流通路 对直流信号电容 C 可看作开路(即将电容断开) +UCC RS es RB RC C1 C2 T + – RL ui uo uBE uCE iC iB iE +UCC RB RC T + – UBE UCE IC IB IE 断开 断开 直流通路 直流通路用来计算静态工作点Q ( IB 、 IC 、 UCE )

uo = 0 uBE = UBE uCE = UCE 无输入信号(ui = 0)时 +UCC RC C2 RB iC C1 iB + T – uo uBE uCE iC iB iE uo = 0 uBE = UBE uCE = UCE uCE t O 无输入信号(ui = 0)时 iC t O uBE t O iB t O UCE IC UBE IB

es 短路 短路 RB RC ui uO RL RS es + – +UCC RS es RB RC C1 C2 T + – RL ui uo uBE uCE iC iB iE 对地短路 短路 短路 交流通路 RB RC ui uO RL RS es + –

? uo  0 uBE = UBE+ ui uCE = UCE+ uo uo = 0 uBE = UBE uCE = UCE uo t +UCC RB RC C1 C2 T + uo – uBE uCE iC iB iE uo  0 uBE = UBE+ ui uCE = UCE+ uo uo = 0 uBE = UBE uCE = UCE ui + – uCE t O uo t O uCE = UCC- iC RC iC t O 无输入信号(ui = 0)时: 有输入信号(ui ≠ 0)时 uBE t O iB t O ui t O IC UCE ? IB UBE

2.2.2 放大电路的静态分析 1.静态概念及静态分析目的 2.分析方法:估算法、图解法。

已知:UCC=12V,RC=4k,RB=300k, =37.5。 例:用估算法计算静态工作点。 已知:UCC=12V,RC=4k,RB=300k, =37.5。 +UCC RB RC T + – UBE UCE IC IB 解:

用图解法确定静态值 UCE /V IC/mA O 直流负载线 Q UCEQ  UCC

2.2.3 放大电路的动态分析 1.动态分析: 计算电压放大倍数Au、输入电阻ri、输出电阻ro等。 2.分析方法: 微变等效电路法,图解法。

微变等效电路法 1). 晶体管的微变等效电路 (1) 输入回路 晶体管的 输入电阻 rbe一般为几百欧到几千欧。 IB Q IB UBE 1). 晶体管的微变等效电路 (1) 输入回路 IB UBE O IB Q 晶体管的 输入电阻 UBE 输入特性 rbe一般为几百欧到几千欧。

(2) 输出回路 IC Q 一般在20~200之间 UCE rce愈大,恒流特性愈好 晶体管的输出电阻 因rce阻值很高,一般忽略不计。 O 一般在20~200之间 输出特性 rce愈大,恒流特性愈好 因rce阻值很高,一般忽略不计。 晶体管的输出电阻

(3). 晶体管的微变等效电路 晶体三极管 微变等效电路 ic ic ib rbe B E C B C E uce + - ube + - uce + - ib ib ube + -

2). 放大电路的微变等效电路 + uO ui - ui RB RC RL RS eS ib ic B C E ii ib ic eS rbe ib RB RC RL E B C ui + - uo RS ii 交流通路 微变等效电路

3).放大倍数、电路输入、输出电阻的计算 rbe RB RC RL E B C + - RS ri

外加 共射极放大电路特点: 1. 放大倍数高; 2. 输入电阻低; 3. 输出电阻高。 求ro的步骤: (1) 断开负载RL (2) 令 或 rbe RB RC RL E B C + - RS 外加 共射极放大电路特点: 1. 放大倍数高; 2. 输入电阻低; 3. 输出电阻高。 求ro的步骤: (1) 断开负载RL (2) 令 或 (3) 外加电压 (4) 求

图解法 1). 交流负载线 交流负载线反映 动态时电流 iC和电 压uCE的变化关系。 交流负载线斜率  ´ IC/mA 4 3 2 1 O 8 12 16 20 B 80mA A 60mA 40mA 20mA UCE/V Q 交流负载线 交流负载线反映 动态时电流 iC和电 压uCE的变化关系。 C 交流负载线斜率  ´ 直流负载线 D

2). 图解分析 iB/A RL= iC ib Q uCE/V t IB iC/mA IC uBE/V UBE UCE Q1 Q2 uo ui

3). 非线性失真 UCE Q uCE/V t iC/mA IC O Q1 若Q设置过高, Q2 适当减小基极电流可消除失真。 uO

如果Q设置合适,信号幅值过大也可产生失真,减小信号幅值可消除失真。 t iB/A uBE/V UBE O Q uCE/V iC/mA UCE uO ui 如果Q设置合适,信号幅值过大也可产生失真,减小信号幅值可消除失真。

温度升高时, IC将增加,使Q点沿负载线上移。 2.4 射极偏置放大电路 2.4.1 静态工作点的稳定 在固定偏置放大电路中,当温度升高时,   、 ICBO  温度升高时, IC将增加,使Q点沿负载线上移。

iC 温度升高时,输出特性曲线上移 Q´ Q O uCE

稳定Q点的原理 RB1 RC C1 C2 RB2 CE RE RL I1 I2 IB + +UCC ui uo – IC RS eS VB

RB1 RC C1 C2 RB2 CE RE RL I1 I2 IB + +UCC ui uo – IC RS eS VB VE VB 固定 T IC VE UBE IC IB

2.4.2 静态工作点的计算 估算法: RB1 RC C1 C2 RB2 CE RE RL I1 I2 IB + +UCC ui uo – IC RS eS VB

2.4.3 动态分析 RB1 RC C1 C2 RB2 CE RE RL + +UCC ui uo – RS eS 如果去掉CE , Au,ri,ro ? 旁路电容 对交流:旁路电容 CE 将RE 短路, RE不起作用, Au,ri,ro与固定偏置电路相同。

RB1 RC C1 C2 RB2 CE RE RL + +UCC ui uo – RS eS 对地 短路 如果去掉CE , Au,ri,ro ? 短路 rbe RB RC RL E B C + - RS RE 去掉CE后的 微变等效电路

分压式偏置电路 有旁路电容CE 无旁路电容CE Au减小 ri 提高 ro不变

对信号源电压的放大倍数? RB1 RC C1 C2 RB2 CE RE RL + +UCC ui uo – RS eS 考虑信号源内阻RS 时 信号源

在图示放大电路中,已知UCC=12V, RC= 6kΩ, RE1= 300Ω, RE2= 2.7kΩ, RB1= 60kΩ, RB2= 20kΩ RL= 6kΩ ,晶体管β=50, UBE=0.6V, 试求: (1) 静态工作点 IB、IC 及 UCE; (2) 画出微变等效电路; (3) 输入电阻ri、ro及 Au。 例1: RB1 RC C1 C2 RB2 CE RE1 RL + +UCC ui uo – RE2

(1)由直流通路求静态工作点。 解: RB1 RC RB2 RE1 +UCC RE2 + – UCE IE IB IC VB 直流通路

(2) 由微变等效电路求Au、 ri 、 ro。 RS 微变等效电路 rbe RB RC RL E B C + - RE1

2.5 射极输出器 es +UCC RB C1 C2 RS + ui uo RE RL – 因对交流信号而言,集电极是输入与输出回路的公共端,所以是共集电极放大电路。 因从发射极输出,所以称射极输出器。

es 2.5.1 静态分析 +UCC 直流通路 RB +UCC C1 IC RB C2 RS IB + UCE ui uo RE RL 2.5.1 静态分析 RB +UCC C1 C2 RE RL ui + – uo es RS 直流通路 +UCC RB RE + – UCE UBE IE IB IC 求Q点:

电压放大倍数Au1且输入输出同相,输出电压跟随输入电压,故称电压跟随器。 2.5.2 动态分析 1. 电压放大倍数 rbe RB RL E B C + - RS RE 微变等效电路 电压放大倍数Au1且输入输出同相,输出电压跟随输入电压,故称电压跟随器。

2. 输入电阻 rbe RB RL E B C + - RS RE 射极输出器的输入电阻高,对前级有利。 ri 与负载有关

射极输出器的输出电阻很小,带负载能力强。 3. 输出电阻 rbe RB RL E B C + - RS RE 射极输出器的输出电阻很小,带负载能力强。

共集电极放大电路(射极输出器)的特点: 1. 电压放大倍数小于1,约等于1; 2. 输入电阻高; 3. 输出电阻低; 4. 输出与输入同相。

主要利用它具有输入电阻高和输出电阻低的特点。 射极输出器的应用 主要利用它具有输入电阻高和输出电阻低的特点。 1. 因输入电阻高,它常被用在多级放大电路的第一级,可以提高输入电阻,减轻信号源负担。 2. 因输出电阻低,它常被用在多级放大电路的末级,可以降低输出电阻,提高带负载能力。 3. 利用 ri 大、 ro小以及 Au 1 的特点,也可将射极输出器放在放大电路的两级之间,起到阻抗匹配作用,这一级射极输出器称为缓冲级或中间隔离级。

es 在图示放大电路中,已知UCC=12V, RE= 2kΩ, 例1: RB= 200kΩ, RL= 2kΩ ,晶体管β=60, UBE=0.6V, 信号源内阻RS= 100Ω,试求: (1) 静态工作点 IB、IE 及 UCE; (2) 画出微变等效电路; (3) Au、ri 和 ro 。 例1: RB +UCC C1 C2 RE RL ui + – uo es RS .

(1)由直流通路求静态工作点。 解: 直流通路 +UCC RB RE + – UCE UBE IE IB IC

(2) 由微变等效电路求Au、 ri 、 ro。 rbe RB RL E B C + - RS RE 微变等效电路

2.6.1.场效应管放大电路的静态偏置 1.自给偏压式偏置电路 2.6 场效应管放大电路 2.6.1.场效应管放大电路的静态偏置 1.自给偏压式偏置电路 +UDD RS CS C2 C1 RD RG + T _ ui uo IS UGS UGS = –RSIS = –RSID 栅源电压UGS是由场效应管自身的电流提供的,故称自给偏压。

将已知的UGS(off)、IDSS代入上两式,解出UGS、ID; 静态分析可以用估算法或图解法( 略 ) +UDD RS CS C2 C1 RD RG + T _ ui uo IS UGS 估算法: 列出静态时的关系式 UGS = – RSID 将已知的UGS(off)、IDSS代入上两式,解出UGS、ID; 由 UDS= UDD –ID(RD+ RS) 解出UDS

例:已知UDD =20V、RD=3k、 RS=1k、 RG=500k、UGS(off)= –4V、IDSS=8mA, 确定静态工作点。 CS C2 C1 RD RG + T _ ui uo IS UGS 解:用估算法 列出关系式 UGS = – 1 ID 解出 UGS1 = –2V、UGS2 = –8V、ID1=2mA、ID2=8mA 因UGS2 <UGS(off) 故舍去 , 所求静态解为UGS = –2V ID=2mA、 UDS= 20 – 2( 3 + 1 )= 12 V

uo ui 2. 分压式偏置电路 静态分析 估算法: 列出静态时的关系式 流过 RG 的电流为零 + – +UDD RS CS C2 C1 RG1 RD RG2 RG RL ui uo 将已知的UGS(off)、IDSS代入上两式,解出UGS、ID; 由 UDS= UDD – ID(RD+ RS) 解出UDS

2.6.3 动态分析 交流通路 电压放大倍数 RG是为了提 高输入电阻ri 而设置的。 输入电阻 输出电阻 RG1 RD RG2 RG + – RL S D G T 交流通路 电压放大倍数 RG是为了提 高输入电阻ri 而设置的。 输入电阻 输出电阻

2.6.4 源极输出器 交流通路 电压放大倍数 特点与晶体管的射极输出器一样 +UDD RS C2 C1 RG1 RG2 RG + – RL ui uo RG1 RS RG2 RG + – RL S D G T 交流通路 电压放大倍数 特点与晶体管的射极输出器一样

当场效应管工作在可变电阻区时,漏源电阻: 场效应管可看作由栅源电压控制的可变电阻。 U DS -1V -1.5V UGS=-0.5V ID/mA 16 20 12 4 8 -2V -2.5V | UGS |愈大, RDS愈大。 N沟道结型场效应管的转移特性