线弹性断裂力学 基本假设与研究内容 强度与缺陷 能量释放率 尖端应力、应力强度因子K与三种断裂形式 I型裂缝的应力、位移场 应力强度因子的计算校核 几种典型应力强度因子 叠加原理 K与G的关系 断裂破坏准则
1. 基本假设与研究内容
基本假设 线弹性 小变形 均匀性 各项同性 连续性 无处应力(可省略) 研究内容:线弹性体的裂缝尖端应力
2. 材料强度与缺陷
为什么材料有强度? 使两个原子分开需要一定的拉应力 克服黏聚力或者翻越能量势垒: 将黏聚力与距离之间的关系简单假设为 满足三角函数: 对于小变形问题: 连接刚度则为: 势能极小值:平衡点 考虑单位面积原子连接数量, 并将连接刚度转换为弹性模量,则有: 材料的表面能可以通过下式估计: 上2式联立可得:
理论上材料的强度与弹性模量处于同一数量级,但是实际上比模量低几个数量级; 为什么材料理论强度远高于实际强度? 理论上材料的强度与弹性模量处于同一数量级,但是实际上比模量低几个数量级; 几种材料的理论和实际强度对比
Griffith的试验 (1921) In 1921 Griffith determined experimentally the fracture stress σb of glass fibers as a function of their diameter. For d > 20 μm the bulk strength of 170 MPa was found. However, σb approached the theoretical strength of 14000 MPa in the limit of zero thickness.
Inglis的理论 (1913) A点应力分布: Inglis C E. Stresses in a plate due to the presence of cracks and sharp corners. Transactions of the institute of naval architects, 1913, 55(219-241): 193-198.
Kirsh的研究 (1898) The 2-D stress field in a large body under uniform remote tensile load and containing a circular hole is given by (Kirsch, 1898) r Y r X 2a The general stress field in dimension less form has the structure: For a linear elastic material, the stress field is always linearly proportional to the applied load
Kirsh的研究 (1898) 理论推导:一般情况 平面极坐标下的应力分量: 双调和函数: Kirsch E G. Die Theorie der Elastizit t und die Bed rfnisse der Festigkeitslehre. Zeitshrift des Vereines deutscher Ingenieure, 1898, 42: 797-807.
Kirsh的研究 (1898) 理论推导 边界条件: Kirsch E G. Die Theorie der Elastizit t und die Bed rfnisse der Festigkeitslehre. Zeitshrift des Vereines deutscher Ingenieure, 1898, 42: 797-807.
Kirsh的研究 (1898) 理论推导 利用叠加原理,边界条件分解: 对于第一类边界条件: 引入应力函数: 应力分量: 双调和函数:
Kirsh的研究 (1898) 理论推导 应力函数的解基本形式: 应力分量: 根据胡克定律,应变分量: 协调方程: B=0 考虑边界条件:
Kirsh的研究 (1898) 理论推导 对于第二类边界条件: 引入应力函数: 应力分量: 双调和函数:
Kirsh的研究 (1898) 理论推导 应力函数的解基本形式: 应力分量: 考虑边界条件: 将两类解相加,即可得到无限大板孔洞周边的应力分布
Kirsh的研究 (1898) 一些特殊情况 Several aspects of this stress field are worth our attention: 1) As =0 Y yy X xx 2a As x, xx0 and yy
Kirsh的研究 (1898) 一些特殊情况 a=0.5 =1 xx xx As x, xx0 and yy
Independent of circular hole size a Kirsh的研究 (1898) 一些特殊情况 Stress concentration As x=a, yy/=3 Independent of circular hole size a a=0.5 =1 yy As x, xx0 and yy
Kirsh的研究 (1898) 一些特殊情况 2) As =0, r=a Y r X 2a
Kirsh的研究 (1898) 一些特殊情况 3) As =0, a 0 Y X 2a If the circular hole changes to an elliptical hole, then what happens on the stress field?
ym yy xm xx 椭圆形孔洞:Inglis的理论 (1913) The 2-D elastic solution for a large body containing an elliptical cavity under uniform remote tensile load was given by (Inglis, 1913) ym yy 2b xm xx X 2a Further discussion: 1)When a=b, then the stress concentration factor of three is recovered for a circular defect; 2) When 0 (the ellipse flattens and become a crack-like defect, ym, no material can withstand infinite stress, so material at ellipse tip must become inelastic, plastic yielding or other inelastic processes
3. 能量释放率
能量平衡条件: 能量与Griffith能量平衡 材料受力过程中所做的功(机械能) ( Ue)可以转换为材料的内能(Ui),表面能( Ua),动能(Uk)和热耗散(Ud) 有: Ue= Ui+Ua+Uk+Ud 能量平衡条件:
现假设材料的动能(Uk)和热耗散(Ud)均可忽略不计,那么单位长度裂纹扩展所需的能量即为新形成表面所需的能量: 能量与Griffith能量平衡 “It may be supposed, for the present purpose, that the crack is formed by the sudden annihilation of the tractions acting on its surface. At the instant following this operation, the strains, and therefore the potential energy under consideration, have their original values; but in general, the new state is not one of equilibrium. If it is not a state of equilibrium, then, by the theorem of minimum potential energy, the potential energy is reduced by the attainment of equilibrium; if it is a state of equilibrium, the energy does not change.” 现假设材料的动能(Uk)和热耗散(Ud)均可忽略不计,那么单位长度裂纹扩展所需的能量即为新形成表面所需的能量: 并有以下定义
Griffith能量平衡
Griffith应力 弹性能 界面能 Griffith能量平衡条件: 弹性区域 Griffith应力: 临界裂纹长度: 平面应力 平面应变 Griffith应力: 临界裂纹长度: Griffith应力:
1948年Irwin和Orowan分别独立的提出考虑材料塑性变形 的Griffith应力: 其中,γp表示单位长度裂纹形成所需的塑性能 广义的Griffith应力表达式: 其中,Wf表示表示断裂能,可能包含塑性,粘塑性,粘弹性等各类能量。 Irwin, G.R., “Fracture Dynamics.” Fracturing of Metals, American Society for Metals, Cleveland, OH, 1948, pp. 147–166. Orowan, E., “Fracture and Strength of Solids.” Reports on Progress in Physics, Vol. XII, 1948, p. 185.
Griffith 阻力R曲线 为什么R曲线是变化的? 对于理想脆性材料,R为定值,因为材料的表面能为定值; Stable Unstable The material resistance is constant with crack growth The material resistance changes with crack growth 为什么R曲线是变化的? 对于理想脆性材料,R为定值,因为材料的表面能为定值; 对于延性材料,R曲线通常随着开裂程度的增加而增加,且趋近于某一定值; 有些材料表现出降低的R曲线,如,带有解理面的金属。
Griffith 阻力R曲线:荷载控制还是位移控制? Stable Unstable 位移控制比荷载控制更为稳定
Griffith 应力分析:材料柔度的变化 定义材料的柔度: 能量变化 固定位移 Griffith能量平衡:
Griffith 应力分析:材料柔度的变化 能量变化 固定荷载 Griffith能量平衡: The energy release rate can be calculated from the change in compliance and that the result for the fixed grip approach is exactly the same as that for the constant load method.
Griffith 应力分析:材料柔度的变化 The energy release rate can be calculated from the change in compliance and that the result for the fixed grip approach is exactly the same as that for the constant load method.
Griffith 能量释放率:计算实例 已知条件见左图,求临界扩展荷载 Step 1 Step 2 Step 3 Step 4
Home work 1 请用Griffith能量平衡法判断双悬臂梁在拉伸荷载下裂纹扩展的稳定性。
4. 尖端应力、应力强度因子K与三种断裂形式
裂纹尖端应力分析 Irwin最早介绍了三种开裂模式
应力场的普遍表达 裂纹尖端应力分析 高阶项 Singularity appears near the crack tip Westergaard, H.M., “Bearing Pressures and Cracks.” Journal of Applied Mechanics, Vol. 6, 1939, pp. 49–53. Irwin, G.R., “Analysis of Stresses and Strains near the End of a Crack Traversing a Plate.” Journal of Applied Mechanics, Vol. 24, 1957, pp. 361–364. Sneddon, I.N., “The Distribution of Stress in the Neighbourhood of a Crack in an Elastic Solid.” Proceedings, Royal Society of London, Vol. A-187, 1946, pp. 229–260. Williams, M.L., “On the Stress Distribution at the Base of a Stationary Crack.” Journal of Applied Mechanics, Vol. 24, 1957, pp. 109–114.
裂纹尖端应力分析 三种开裂模式裂纹尖端应力表达 混合开裂模式裂纹尖端应力表达
裂纹尖端应力分析 I和II型裂纹尖端应力和位移场
5. I型裂缝的应力、位移场 平面问题的弹性方程
I型裂缝应力位移场 弹性体物理方程(笛卡尔坐标系) 物理方程--表示(微分体上)应力和形变 之间的物理关系。 即为广义胡克定律:
I型裂缝应力位移场 平面应力 平面应力问题的物理方程: 代入 ,得: 在z方向
I型裂缝应力位移场 平面应变 平面应变问题的物理方程 代入 得 在z方向,
I型裂缝应力位移场 变换关系: 平面应力物理方程→平面应变物理方程: 平面应变物理方程→平面应力物理方程:
I型裂缝应力位移场 引入平衡方程和协调方程 平衡方程 协调方程 引入应力函数 协调方程
I型裂缝应力位移场(极坐标一般方程) Laplace变换
I型裂缝应力位移场(极坐标一般方程) 应变位移方程 平衡方程 协调方程 应力函数和协调方程
裂缝应力位移场:William应力函数 1939年,Westergaard利用复平面应力函数提出了应力I型裂缝周边应力分布的一般解; 1957年,Williams提出了平面内裂缝荷载分布的一般解。 锐角 钝角 Ci,i=1-4为常数 Westergaard, H.M., “Bearing Pressures and Cracks.” Journal of Applied Mechanics, Vol. 6, 1939, pp. 49–53. Williams, M.L., “On the Stress Distribution at the Base of a Stationary Crack.” Journal of Applied Mechanics, Vol. 24, 1957, pp. 109–114. Williams, M.L., “Stress Singularities Resulting from Various Boundary Conditions in Angular Corners of Plates in Extension.” Journal of Applied Mechanics, Vol. 19, 1952, pp. 526–528.
裂缝应力位移场:William应力函数 将上式带入极坐标方程,可得: 该式应满足 且开裂面应力为0, 则λ应满足 则应力函数Φ可扩展为满足上述条件的更为一般的表达式: Γ为与F及其导数有关的函数
裂缝应力位移场:William应力函数 上述条件使得上式中C1和C2消掉,可得: 为常数,且 对称荷载 非对称荷载
裂缝应力位移场:William应力函数 坐标轴转换 Model I Model II
Home work 2 利用复变函数,请自行推导裂缝周边应力分布的Westergaard表达
6 应力强度因子的计算校核
应力强度因子的计算校核 Calibration of K, when a full field is know, either analytically or numerically (e.g. FEM), the stress intensity factor (SIF) can be extracted. Unit: MPam1/2 and MNm-3/2
应力强度因子的计算校核 应力强度因子与材料宏观物理量之间的关系 Case I: through crack Case II: edge crack The 12% increase in KI for the edge crack is caused by different boundary conditions at the free edge. The edge crack opens more because it is less restrained than the through crack, which forms an elliptical shape when loaded.
应力强度因子的计算校核 应力强度因子与材料宏观物理量之间的关系 Case III: penny crack Case IV: randomly oriented through crack
应力强度因子的计算校核 应力强度因子与材料宏观物理量之间的关系
应力强度因子的计算校核 应力强度因子计算实例 问题: 已知:材料尺寸和荷载情况见右图, y=0 处的应力场可以表示为 问题: (1) Derive the stress intensity factor (KI) for the given configuration using the above stress field. (2) Give the crack tip approximate stress field (yy) using above stress intensity factor (KI). (3) Assume the acceptable tolerance in the stress field yy is 10%, i.e. solve the outer limit of the zone (K- dominant zone) in the form of x/a.
应力强度因子的计算校核 解: (1)Shift the co-ordinate to the crack tip, then: x’=x-a and x=x’+a (2) (3) Approximate solution of yy Exact solution of yy
应力强度因子的计算校核 裂缝和试件尺寸的影响 When the crack dimensions are small compared to the size of the plate; the crack-tip conditions are not influenced by external boundaries. As the crack size increases, or as the plate dimensions decrease, the outer boundaries begin to exert an influence on the crack tip.
应力强度因子的计算校核 裂缝和试件尺寸的影响
7 几种典型受力条件下的K值计算
典型K值计算 f is a non-dimensional correction factor which depends on the geometry of the body containing the crack. Tada H, Paris P C, Irwin G R. The stress analysis of cracks[J]. Handbook, Del Research Corporation, 1973.
典型K值计算 f is a non-dimensional correction factor which depends on the geometry of the body containing the crack. Tada H, Paris P C, Irwin G R. The stress analysis of cracks[J]. Handbook, Del Research Corporation, 1973.
典型K值计算 Tada H, Paris P C, Irwin G R. The stress analysis of cracks[J]. Handbook, Del Research Corporation, 1973.
8叠加原理(线弹性)
叠加性原理 For linear elastic materials, individual components of stress, strain, and displacement are additive. The stress intensity factor for a combination of load systems p, q, r... can be obtained simply by superposition: But
叠加性原理 Example:1 W=1000, 500, 100
叠加性原理 Example:2
9 K与G的关系
For linear elastic materials, YES K与G的关系 We now know tow important parameters: the energy release rate G and the stress intensity factor K, The energy release rate describes global behavior, while K is a local parameter Is one related to the other? For linear elastic materials, YES Plane stress Plane strain G-K relations apply only to a through crack in an infinite plate, are they the general relationships that apply to all configurations?
K与G的关系 Irwin的证明 设板的厚度均匀一致,在 x = 0, Δa之间加荷载使裂纹闭合,该力所做的功可以表示为: 其中,ΔU为裂纹闭合所需的能量变化,可表示为0, Δa区间内的总功: 裂纹闭合功增量dU又可以表示为局部应力位移之积: Y方向位移场为: 令Θ=π,有:
K与G的关系 Irwin的证明 Y方向应力场为: 则总闭合功为: 当三种开裂模式均存在,其能量释放率与应力强度因子之间的关系可以表示为:
10.断裂破坏准则
裂纹尖端屈服区 Crack-tip Yielding Zone 材料断裂破坏准则 裂纹尖端屈服区 Crack-tip Yielding Zone As r0, Around crack tip inelastic The stress field given above is only valued outside this inelastic zone.
K-dominant zone 材料断裂破坏准则 The question may arise at what distance to the crack tip, displacement and stresses are still described accurately by the first term of the total solution. There is no clear answer to this question. The K-zone, where the first term, whose value is determined by the stress intensity factor K, is the only important one, depends on geometry and loading As r , 0 The stress field given above is therefore good only for an annular ring of material surrounding the crack tip. This annular ring is called K-dominant zone.
材料断裂破坏准则
材料断裂破坏准则 If we assume a material fails locally at some combination of stresses and strains, then crack extension must occur at a critical K value. This Kc value, which is a measure of fracture toughness, is a material constant that is independent of the size and geometry of the cracked body. Variation of measured fracture toughness with specimen thickness for an unspecified alloy Barsom and Rolfe, Fracture and Fatigue Control in Structures. 2nd Ed., Prentice-Hall, Englewood Cliffs, NJ, 1987.
材料断裂破坏准则 一些材料强度与断裂韧度 Gdoutos, E.E. Fracture Mechanics ; an introduction. Kluwer Academic Publishers, 1993.
材料断裂破坏准则 一些材料强度与断裂韧度 Gdoutos, E.E. Fracture Mechanics ; an introduction. Kluwer Academic Publishers, 1993.
Home work 3 Calculate and plot the maximum external load P for three point bending specimen with crack length up to 70% beam height. B=100mm, W=100mm, S=4W. KIC=0.2 MPa(m1/2). P W a S