實驗經濟學一:行為賽局論 Experimental Economics I: Behavioral Game Theory 第十四講:市場設計:臺灣國中會考 Lecture 14: Market Design at Taiwan 授課教師:國立臺灣大學 經濟學系 王道一教授(Joseph Tao-yi.

Slides:



Advertisements
Similar presentations
高考英语阅读分析 —— 七选五. 题型解读: 试题模式: 给出一篇缺少 5 个句子的文章, 对应有七个选项,要求同学们根据文章结构、 内容,选出正确的句子,填入相应的空白处。 考查重点: 主要考查考生对文章的整体内容 和结构以及上下文逻辑意义的理解和掌握。 (考试说明) 选项特点: 主旨概括句(文章整体内容)
Advertisements

TOEFL Speaking ----Q1&Q2 坚果托福 秀文. 评分标准评分标准 Volume Grammar Fluency Logic / Organization Lexical ability Pronunciation.
考研英语复试 口语准备 考研英语口语复试. 考研英语复试 口语准备 服装 谦虚、微笑、自信 态度积极 乐观沉稳.
臺灣現代主義小說 Reading Taiwan's Modernism Fiction 第十一講:黃春明〈兒子的大玩偶〉(二)
IFY Parents Meeting 3 December 年12月3日家长会
-CHINESE TIME (中文时间): Free Response idea: 你周末做了什么?
資2-6-3 能發現並討論問題 教育部增置國小圖書教師輔導與教育訓練計畫 圖書資訊利用教育教學綱要及教學設計小組
臺灣現代主義小說 Reading Taiwan's Modernism Fiction 第十講:黃春明〈兒子的大玩偶〉(一)
Today – Academic Presentation 学术报告
2012高考英语书面表达精品课件:话题作文6 计划与愿望.
摘要的开头: The passage mainly tells us sth.
【本著作除另有註明外,採取創用CC「姓名標示-非商業性-相同方式分享」臺灣3.0版授權釋出】
Thinking of Instrumentation Survivability Under Severe Accident
指導教授:許子衡 教授 報告學生:翁偉傑 Qiangyuan Yu , Geert Heijenk
I’m going to be a basketball player.
Population proportion and sample proportion
教師的成長 與 教師專業能力理念架構 教育局 專業發展及培訓分部 TCF, how much you know about it?
西洋哲學史 西洋哲學的創始:古希臘哲學 (一)
模仿、認識與現象學 臺北醫學大學通識教育中心 林文琪副教授
微積分網路教學課程 應用統計學系 周 章.
第二單元 L’alphabet et les prénoms français
MICROECONOMICS Chapter16 Price Control 價格管制.
1. 課程簡介、定義 Marketing 授課教師:國立台灣大學農業經濟學系雷立芬教授
課務組 Curriculum Section
By Gu Xiaojin, Executive Vice Chair China Youth Development Foundation
创建型设计模式.
法文 授課教師:歐德尼教授 第十九單元 Un dimanche habituel. 星期日的例行生活。
Area of interaction focus
Randomized Algorithms
This Is English 3 双向视频文稿.
子博弈完美Nash均衡 我们知道,一个博弈可以有多于一个的Nash均衡。在某些情况下,我们可以按照“子博弈完美”的要求,把不符合这个要求的均衡去掉。 扩展型博弈G的一部分g叫做一个子博弈,如果g包含某个节点和它所有的后继点,并且一个G的信息集或者和g不相交,或者整个含于g。 一个Nash均衡称为子博弈完美的,如果它在每.
第十單元 Comment compter en français ?
消費者偏好與效用概念.
數學與文化:以數學小說閱讀為進路 洪萬生 台灣師範大學數學系退休教授
第二講:初步認識釋迦摩尼佛的生平與教學 授課教師:國立臺灣大學哲學系 蔡耀明 教授
Survey of Selected Western Classics Unit 6: 聖經中的詩- Psalms
Lesson 44:Popular Sayings
第十五课:在医院看病.
Dynamic Games of Incomplete Information -- Chapter 4
Chapter 5 Recursion.
歐盟法與生命文化 (二) 第八單元 Protestantism Spirit of Reformation
Chp.4 The Discount Factor
授課時間:2012年10月25日(四)16:30~18:20 授課地點:博雅教學館 405、406室
Operations Management Unit 3: Project Management (2)
Unit title: 学校 School Area of interaction focus Significant concepts
第一講:課程介紹 授課教師:國立臺灣大學哲學系 蔡耀明 教授
Chp.4 The Discount Factor
BORROWING SUBTRACTION WITHIN 20
授課教師:國立臺灣大學 政治學系 王業立 教授
法文 授課教師:歐德尼教授 (1) Les voyelles (révision) 母音
臺灣現代主義小說 Reading Taiwan's Modernism Fiction 第一講:課程簡介
法學入門 第 1 單元:法學入門 【本著作除另有註明外,採取創用CC「姓名標示-非商業性-相同方式分享」台灣3.0版授權釋出】
【本著作除另有註明外,採取創用CC「姓名標示-非商業性-相同方式分享」臺灣3.0版授權釋出】
中央社新聞— <LTTC:台灣學生英語聽說提升 讀寫相對下降>
Kant on Categorical Imperative
Array I 授課教師 Wanjiun Liao
Chp.4 The Discount Factor
高考应试作文写作训练 5. 正反观点对比.
政府的减贫计划如何使资源有效向穷人传递? How should government make and implement specific poverty reduction program to effectively transfer resources to the poor? Wang Sangui.
定语从句 ●关系词的意义及作用 : 定语从句一般都紧跟在它所修饰名词后面,所以如果在名词或代词后面出现一个从句,根据它与前面名词或代词的逻辑关系来判断是否是定语从句。
都;和 “both, all”; “and” 几 “how many” 做什么的 “do what (occupation)”
An organizational learning approach to information systems development
Operations Management Unit 4: Developing a Process Strategy
Operations Management Unit 5: Analyzing Processes (1)
第二單元(2):Case Study- Li & Fung
【本著作除另有註明外,採取創用CC「姓名標示-非商業性-相同方式分享」臺灣3.0版授權釋出】
國立東華大學課程設計與潛能開發學系張德勝
【本著作除另有註明外,採取創用CC「姓名標示-非商業性-相同方式分享」臺灣3.0版授權釋出】
怎樣把同一評估 給與在不同班級的學生 How to administer the Same assessment to students from Different classes and groups.
Presentation transcript:

實驗經濟學一:行為賽局論 Experimental Economics I: Behavioral Game Theory 第十四講:市場設計:臺灣國中會考 Lecture 14: Market Design at Taiwan 授課教師:國立臺灣大學 經濟學系 王道一教授(Joseph Tao-yi Wang ) 本課程指定教材: Colin E. Camerer, Behavioral Game Theory: Experiments in Strategic Interaction. New York: Russell Sage Foundation; New Jersey: Princeton UP, 2003. 【本著作除另有註明外,採取創用CC「姓名標示-非商業性-相同方式分享」臺灣3.0版授權釋出】

志願難填 教團:學生陷賽局困境 (2014/6/9國語日報)國教行動聯盟昨天痛批,升學制度儼然變成賭博式賽局,學生想進理想學校,竟得猜測別人的志願怎麼填,陷入「賽局理論」困境。 國教行動聯盟理事長王立昇表示,志願序納入超額比序計分,填錯會被扣分,加上第一次免試分發後,基北區約有六千個學生可能放棄錄取考特招,所以預測別人填哪些志願、會不會放棄一免,成了填寫志願的重要因素。 王立昇指出,「賽局理論」是研究遊戲中個體預測對方和己方行為,所產生的影響,並分析最佳策略。現在的十二年國教,已經讓學生面臨一樣的困擾。 12/5/2018

填志願諜對諜 國教盟驚爆:學生想輕生 國中會考成績上周四公布後,家長學生茫然不知如何選填志願。 國教行動聯盟今上午公開呼籲教育部,今年取消志願序計分,或採3-7個志願為群組,差一個群組扣1分,以免學生陷入選填志願的博弈賽局中,填志願淪為諜對諜。 Conclusion 結論

填志願諜對諜 國教盟驚爆:學生想輕生 (2014/6/7蘋果日報) 國教行動聯盟理事長王立昇表示,…教育部應公布更多資訊並延長志願表繳交時間,讓學生有更充足資訊能錄取最理想的學校。他進一步表示,學生為了上好學校,同學間已互相猜忌,打探彼此第一志願是什麼做為自己選填志願的參考,陷入博弈賽局中,解決方法只有取消志願序計分,或擴大為群組計分,降低傷害。 Conclusion 結論

制度變數多 教團憂入學如賽局 (2014/6/8) (中央社記者許秩維) 國教行動聯盟今天說,國教入學制度變數多,恐陷賽局理論,孩子得預測他人如何填志願,聯盟籲取消志願序計分。 國教行動聯盟舉行記者會,憂心國教入學制度陷入賽局理論的困境,讓學生和家長寢食難安。 國教行動聯盟理事長王立昇表示,目前國教入學制度面臨幾個問題,如志願序計分,由於不知別人如何填志願,要進入自己理想的學校就可能有很多變數,導致陷入賽局理論的困境,學生家長難以填志願。 Conclusion 結論 12/5/2018

Taiwan High School Choice History School Choice in Taiwan Old System: Gale-Shapley Deferred Acceptance New System in 2014 Exam-exempt School Choice based on: # of ABC from Joint Exam (會考) Self-reported School Choice Rankings Other factors (that all get the same score) Chinese composition: Grade 1-6 A++, A+, A, A-, etc. 12/5/2018

Taiwan School Choice: A Simplified Model How can we analyze this? Simplify to obtain a tractable model/example Implement in the lab What are key elements of the situation? What are the key results to reproduce? Next: Run lab experiments to Test the model Try alternative institutions Teach parents/policy makers 12/5/2018

Taiwan School Choice: A Simplified Model Three schools: A, B, C Three students: 1 & 2 are type a, 3 is type c Student Payoffs: School Payoffs: Actions: Self-report School Choice Rankings Assign everyone to their first choice Ties broken by student type (grade), then random Remaining students assigned to remaining schools

Taiwan School Choice: A Simplified Model This is manipulable (=not strategy-proof) Truthful Reporting of Ranking is not BR! Suppose all students truthfully report ABC Outcome: Student 1, 2 go to schools A, B (randomly) and student 3 goes to school C Schools ABC get students of type aac But: Student 3 could gain by misreporting!

Taiwan School Choice: A Simplified Model What is the Nash Equilibrium of the game? Student 3 reports BAC Student 1 & 2 report ABC with prob. p, report BAC with prob. (1 – p) Outcome: p2 : School ABC get students of type aca When both Student 1 & 2 report ABC… 1 – p2: School ABC get students of type aac 12/5/2018

Why is this a Nash Equilibrium? 3 reports BAC; 1,2 report ABC/ BAC with (p,1 – p) For Student 1 (and 2) to mix, need: 12/5/2018

Taiwan School Choice: A Simplified Model Why is this a Nash Equilibrium? Student 1 & 2 report ABC with prob. For Student 3, we need Since increasing 12/5/2018

Conclusion (for the Example) 結論 Nash Equilibrium of this 3-student game: Student 3 untruthfully reports BAC Student 1 & 2 mix between truthful & untruthful reports ABC/ BCA, (p, 1 – p) Outcome: p2 : School ABC get students of type aca When both Student 1 & 2 report ABC… 1 – p2: School ABC get students of type aac Conclusion 結論

Is Cardinal Utility Required? Possible Extensions: Is Cardinal Utility Required? Ordinal preferences is fine if exists p so that What if students have different preferences? Different Risk Attitudes? What if there are more students/schools? What if schools can also act strategically? What is a Good Alternative Mechanism? Conclusion 結論 12/5/2018

A Simple Theory of Matching (R-S, Ch.2) Gale & Shapley (1962); Roth & Sotomayor (1990) Finite Set of Students S and Schools C 1-1 Matching, Strict (Ordinal) Preferences: : Student s prefers School c to : School c prefers Student s to : is acceptable to j A matching is Conclusion 結論

A Simple Theory of Matching (R-S, Ch.2) Matching blocked by individual if Matching blocked by pair s, c if and Matching is stable if it is blocked by neither Core = Set of all stable matchings A stable matching is Pareto efficient Theorem (Gale-Shapley, R-S Theorem 2.8) Exists a stable matching in any 1-1 matching market Conclusion 結論 12/5/2018

Deferred Acceptance Algorithm Step 1: Students apply to their first choices Schools tentatively hold most preferred student and reject all others Step t (2 and above): Students rejected in Step t – 1 apply to next highest choice Schools tentatively hold most preferred student (new or held) and reject all others Stop when no more new applications Happens in finite time! Conclusion 結論 12/5/2018

DA Algorithm: Taiwan School Choice Model 3 schools: A, B, C ; 3 students: a, b, c Student Payoffs: School Payoffs: Step 1: All students apply to school A School A holds student a and rejects b, c Step 2: Students b, c apply to school B School B holds student b and rejects c Step 3: Students c applies to school C School C holds student c and terminates DA! 12/5/2018

Deferred Acceptance Algorithm Proof of Theorem (Gale-Shapley) DA gives matching where no student/school applies to/holds unacceptable schools/students Matching not blocked by any individual! If ,s was rejected by c before in DA But in DA, c rejects only if it sees better choice! Hence, Matching not blocked by any pair! Resulting Matching of DA is stable. QED Conclusion 結論

DA Algorithm: Taiwan School Choice Model What does stable mean in the field?! Roth (1984): stable ones successfully used continue to be used (unstable ones abandoned) Few complaints in Taiwan?! A student-proposing DA algorithm yields: Student-optimal stable matching (superior to all other stable matching) Proof of Theorem? See R-S Theorem 2.12 12/5/2018

DA Algorithm: Marriage Matching Male-optimal stable matching (superior to all other stable matching) Female-pessimal (inferior to all other stable matching) In contrast, A female-proposing DA leads to Female-optimal/male-pessimal stable matching Why is proposing power less important school choice? Student/School Preferences More Aligned? 12/5/2018

Rural Hospital Theorem (R-S Theorem 2.22) The same set of students/schools are left unmatched in all stable matching This means: A loser is a loser in any stable matching (魯蛇到哪裡都是魯蛇) Cannot expect any stable-matching mechanism to solve rural hospital problem (偏遠地區醫療) Proof? Let $\mu^S$ be the student-optimal stable matching and $\mu$ be an arbitrary stable matching. Since $\mu^S$ is student-optimal, all the students that are matched in $\mu$ are matched in S . Since S is college-pessimal, all the colleges that are matched in $\mu^S$ are matched in $\mu$. But the number of matched students and colleges are the same in any matching. This means that the same set of students and colleges are matched in $\mu^S$ and $\mu$. 12/5/2018

Proof of Rural Hospital Theorem Student-optimal stable matching Alternative stable matching is student-optimal: Students matched in also matched in is school-pessimal: Schools matched in also matched # of matches are the same in any match Same set of students/schools matched in Let $\mu^S$ be the student-optimal stable matching and $\mu$ be an arbitrary stable matching. Since $\mu^S$ is student-optimal, all the students that are matched in $\mu$ are matched in $\mu^S$. Since S is college-pessimal, all the colleges that are matched in $\mu^S$ are matched in $\mu$. But the number of matched students and colleges are the same in any matching. This means that the same set of students and colleges are matched in $\mu^S$ and $\mu$. 12/5/2018

Truthful Reporting and Strategy-Proofness Main problem of the new system in Taiwan: People want to misrepresent their preferences! Mechanism: Rule that yields a matching from (reported) preferences A mechanism is strategy-proof if reporting true preferences is a dominant strategy for everyone The new system in Taiwan is not strategy-proof Is DA strategy-proof? Let $\mu^S$ be the student-optimal stable matching and $\mu$ be an arbitrary stable matching. Since $\mu^S$ is student-optimal, all the students that are matched in $\mu$ are matched in S . Since S is college-pessimal, all the colleges that are matched in $\mu^S$ are matched in $\mu$. But the number of matched students and colleges are the same in any matching. This means that the same set of students and colleges are matched in $\mu^S$ and $\mu$. 12/5/2018

Truthful Reporting and Strategy-Proofness In fact, no stable mechanism is strategy-proof! (R-S Theorem 4.4) But, by Dubins and Freedman 1981, Roth 1982: Theorem (R-S Theorem 4.7): The student-proposing DA is strategy-proof for students. Why DA (old system in Taiwan) is good: Stable Students prefer it to all other stable matching Strategy-proof for students 12/5/2018

Strategy-proof  Manipulable 1-1  Many-to-one Extensions: Strategy-proof  Manipulable Degree of strategy-proofness (instead of Y/N) 1-1  Many-to-one Schools can accept up to students (quota) Existence of stable many-to-one matching market X-proposing DA  X-optimal stable matching Rural Hospital Theorem (fill same # of students) Student-proposing DA strategy-proof for students No stable mechanism strategy-proof for schools Problem for Married Couples?! Let $\mu^S$ be the student-optimal stable matching and $\mu$ be an arbitrary stable matching. Since $\mu^S$ is student-optimal, all the students that are matched in $\mu$ are matched in S . Since S is college-pessimal, all the colleges that are matched in $\mu^S$ are matched in $\mu$. But the number of matched students and colleges are the same in any matching. This means that the same set of students and colleges are matched in $\mu^S$ and $\mu$. 12/5/2018

版權聲明版權聲明 頁碼 作品 版權標示 來源/作者 1-26 2 3-4 國立臺灣大學 經濟學系 王道一 教授 國教行動聯盟昨天痛批,升學制度儼然…現在的十二年國教,已經讓學生面臨一樣的困擾。 劉偉瑩,國語日報,〈志願難教 教團:學生陷賽局困境〉,2014/6/9,引用自臺北市教育e週報 http://enews.tp.edu.tw/paper_show.aspx?EDM=EPS20140610144609J3Q 瀏覽日期:2016/2/20,依據著作權法第46、52、65條合理使用 3-4 國中會考成績上周四公布後…以免學生陷入選填志願的博弈賽局中…解決方法只有取消志願序計分,或擴大為群組計分,降低傷害。 陳威廷,蘋果日報,〈填志願諜對諜 國教盟驚爆:學生想輕生〉,2014/06/08 http://www.appledaily.com.tw/realtimenews/article/new/20140608/412340/

版權聲明版權聲明 頁碼 作品 版權標示 來源/作者 5 8-9 11 12 國教行動聯盟今天說,國教入學制度變數多,恐陷賽局理論….要進入自己理想的學校就可能有很多變數,導致陷入賽局理論的困境,學生家長難以填志願。 許秩維,中央社,〈制度變數多 教團憂入學如賽局〉,引用自中時電子報,2014/06/8 http://www.chinatimes.com/realtimenews/20140608002093-260405 瀏覽日期:2016/2/20 依據著作權法第46、52、65條合理使用 8-9 國立臺灣大學 經濟學系 王道一 教授 如需引用,請參考盧士彧,〈臺灣高中入學分析〉,臺灣大學社會科學院經濟學系碩士論文,pp.25-27. 11 12

版權聲明版權聲明 頁碼 作品 版權標示 來源/作者 14 15 16 17 國立臺灣大學 經濟學系 王道一 教授 如需引用,請參考盧士彧,〈臺灣高中入學分析〉,臺灣大學 社會科學院經濟學系碩士論文,pp.25-27. 依據著作權法第46、52、65條合理使用 15 A.E. Roth and Marilda Sotomayer, Two-Sided Matching, Cambridge UP, 1992, pp.17-20. 16 Theorem (Gale-Shapley, R-S Theorem 2.8) -Exists a stable matching in any 1-1 matching market A.E. Roth and Marilda Sotomayer, Two-Sided Matching, Cambridge UP, 1992, pp.27. 17 Step 1: Students apply to their first choices… new applications. Happens in finite time! A.E. Roth and Marilda Sotomayer, Two-Sided Matching, Cambridge UP, 1992, pp.28-30.

版權聲明版權聲明 頁碼 作品 版權標示 來源/作者 18 19 20 25 國立臺灣大學 經濟學系 王道一 教授 如需引用,請參考盧士彧,〈臺灣高中入學分析〉,臺灣大學社會科學院經濟學系碩士論文,pp.25-27. 依據著作權法第46、52、65條合理使用 19 Proof of Theorem (Gale-Shapley) DA gives matching...Resulting Matching of DA is stable. QED A.E. Roth and Marilda Sotomayer, Two-Sided Matching, Cambridge UP, 1992, pp.30-32. 20 stable ones successfully used continue to be used (unstable ones abandoned) A.E. Roth, “The Evolution of the Labor Market for Medical Interns and Residents: A Case Study in Game Theory,” Journal of Political Economy, Vol.92, No.6, (1984), pp. 995-996 and 998-999. 25 Theorem (R-S Theorem 4.7): The student-proposing DA is strategy-proof for students. A.E. Roth and Marilda Sotomayer, Two-Sided Matching, Cambridge UP, 1992, pp.90.