Outrigger Optimization for Super Tall Structures Under Multiple Constraints 多约束条件下超高结构伸臂系统优化
目录 Contents 1、塔楼结构设计概述 Overview of the tower 2、灵敏度向量算法 Sensitivity vector method 3、伸臂桁架优化 Optimization for outrigger truss
塔楼结构设计概述 Overview of the tower 多约束条件下超高结构伸臂系统优化 Outrigger Optimization for Super Tall Structures Under Multiple Constraints
结构体系概况 Overview of structural system 典型平面布置 Typical level layout
原设计方案 Original scheme 伸臂设置 X向:13678区 Y向:13467区 Outrigger location X direction: zone 1,3,6,7,8 Y direction: zone 1,3,4,6,7
原设计方案 Original scheme Ty=9.05s Tx=8.69s 最大层间位移角:1/504 Maximum story drift: 1/504
灵敏度向量算法 Sensitivity vector method 多约束条件下超高结构伸臂系统优化 Multi-Constrained Outrigger Optimization for Super Tall Structures
灵敏度向量算法 Sensitivity vector method 采用用灵敏度向量算法对伸臂桁架的布置道数和布置位置进行了优化,主要优 化参数如下: The sensitivity number method is adopted to optimize the number and placement of the outriggers under both story drift and vibration period constraints. The main conditions considered are as follows: a) 优化目标: 结构材料用量最小化; The objective of the optimization: minimum usage of material; b) 约束条件: 最大层间位移角<1/500 一阶周期<9.5s 剪重比>1.0% Constraints considered : Maximum story drift < 1/500, Fundamental vibration period < 9.5s Shear-weight ratio >1.0%.
灵敏度向量算法 Sensitivity vector method Calculate story drift vector {d0} with none outrigger 分别计算不同位置设置伸臂时结构的层间位移角向量{di} Calculate story drift vector {di} with different location of outrigger 获得层间位移角向量对伸臂位置的灵敏度 Obtain sensitivity of story drift to outrigger location 通过对灵敏度向量做数乘,快速获得 不同伸臂道数的最优布置位置 Obtain location of outrigger with multiply of sensitivity vector
伸臂桁架优化 Optimization for outrigger truss 多约束条件下超高结构伸臂系统优化 Outrigger Optimization for Super Tall Structures Under Multiple Constraints
伸臂桁架优化 Optimization for outrigger truss 单道伸臂对结构自振周期最优布置方案在第五区 Optimal outrigger placement under the vibration period constraint is zone 5
伸臂桁架优化 Optimization for outrigger truss 对限制最大层间位移角的最优布置方案在第六区 Optimal placement for a single outrigger scheme is in zone 6 under the story drift constraint.
伸臂桁架优化 Optimization for outrigger truss 单道伸臂桁架和不设置伸臂的层间位移角 Story drifts of single-outrigger schemes and non-outrigger scheme.
伸臂桁架优化 Optimization for outrigger truss 灵敏度算法获得的设置不同数目伸臂桁架最优位置组合层间位移角 Story drifts of different combinations of the optimal single-outrigger schemes obtained by the sensitivity vector method.
伸臂桁架优化 Optimization for outrigger truss 由整体结构模型计算曲线对比可知,灵敏度向量算法对伸臂最优位置的确定 是准确的。 It is seen that the optimal outrigger placements obtained by sensitivity method are almost the same as those obtained by 3D structural model.
不同伸臂道数时最优布置位置 Optimal location of different numbers of outrigger 注: 表示X向布置伸臂, 表示Y向布置伸臂
最优道数及位置 Optimum number and location
优化效益 Optimization benefits 伸臂道数的减少可以带来以下效益: a) 增加使用面积,提高设备层机电布置灵活性; b) 减少钢材用量; c) 加快施工周期; Structural optimization for outrigger system can introduce the following benefits: a) making extra spaces for building functions and equipment b) Steel tonnage decrease c) Construction period reduction
结论 Conclusion (1) The optimal design of the outrigger system under one constraint does not necessary capture the optimal design under the other constraint; 多约束条件下,对某个约束最优的伸臂系统并不一定 对其他约束也是最优的; (2) The optimal design of outrigger system for engineering application purpose can only be achieved by comprehensively considering multiple design constraints; 总体最优的伸臂系统设计需综合考虑多个约束条件的 影响;
结论 Conclusion (3) The optimal combination of multiple outriggers can be effectively obtained by using the sensitivity number method under story drift constraints; 灵敏度向量算法可以获得伸臂系统的最优位置和数量; (4) The optimal design of outrigger system can greatly reduce the structural steel tonnage, and the proposed Multi- Constrained Sensitivity method is effective for the optimal outrigger design of super tall buildings. 伸臂系统优化设计可显著减少结构钢材用量。
THANK YOU! 谢谢!