第七章 基因突变 基因突变:由于DNA分子中碱基所发生的改变,导致DNA分子结构发生稳定的改变。.

Slides:



Advertisements
Similar presentations
DNA 的 结 构 DNA 的 结 构. 课 前 提 问 1. 噬菌体侵染细菌的实验步骤、阶段: 2. 遗传物质的特点: 3. 证明 DNA 是主要遗传物质的实验什么 ? 4. 如果噬菌体 DNA 用放射性 31 P 标记,请问, 在正常细菌体内合成的子代噬菌体 DNA 中, 是否全部含有放射性 31.
Advertisements

第四节 RNA 的空间结构与功能. RNA 的种类和功能 核糖体 RNA ( rRNA ):核蛋白体组成成分 转移 RNA ( tRNA ):转运氨基酸 信使 RNA ( mRNA ):蛋白质合成模板 不均一核 RNA ( hnRNA ):成熟 mRNA 的前体 小核 RNA ( snRNA ):
DNA 损伤与修复 第六章 DNA 损伤与修复 DNA damage and repair DNA damage and repair 分子生物学研究中心.
基因突变及分子细胞生物学效应 Gene Mutation
欢 迎.
第四节 DNA损伤与修复.
第十一章 基因突变 学习要点: 1.基因突变的相关概念 2.基因突变的分子基础 3.突变的修复机制 4.突变的检测 5.突变的遗传学效应.
DNA 损伤形式、修复机制及相关知识
第六讲 基因组进化 的分子基础.
氨基酸脱水缩合过程中的相关计算 广东省德庆县香山中学 伍群艳 H O C H COOH R2 N NH2 C C 肽键 R1 H2O.
第5章 基因突变 本章重点: 1、基因突变的鉴定 2、基因突变的分子机制 本章难点: 1、移动遗传因子 2、突变的分子机制.
二肽 反应过程: A1+A2+A3+…+An → 多肽+(n-1)H2O R O H R’ NH2 C C OH H N C COOH H
第六课 遗传与变异 第二课时 DNA分子的结构与复制.
2012年高考说明要求 考纲解读 遗传信息的转录和翻译 Ⅱ 掌握DNA与RNA组成、结构和功能的异同点 理解遗传信息转录、翻译过程的区别和联系以及学会有关图形的识别 学会基因表达过程中有关碱基和氨基酸数量关系的计算、推导.
Molecular Mechanism of Disease
第十三章 DNA的损伤修复.
病原:痘病毒属于痘病毒科、脊椎动物痘病毒亚科,该亚科现有8个属,各属成员对动物的致病作用有明显的差异,但它们构造差异不大。
第七节 维生素与辅因子.
第十章 基因突变 Chapter 10 Gene Mutation
转基因生物和基因打靶 转基因动物 转基因植物 基因打靶.
生命的物质基础.
第十三章 DNA的生物合成 DNA是由四种脱氧核糖核酸所组成的长链大分子,是遗传信息的携带者。
必修二 遗传与进化 第三章 基因的本质 第二节 DNA分子的结构 巢湖市 和县一中 张勇.
第六章 微生物的遗传和变异.
C 1.关于生物体内的遗传物质 下列说法正确的是( ) A.细菌的遗传物质主要是DNA B.病毒的遗传物质主要是RNA
DNA分子的结构.
问 题 探 讨 1.DNA的中文全名是什么? 2.为什么DNA能够进行亲子鉴定? 3.你还能说出DNA鉴定技术在其他方面的应用吗?
寻找生命的螺旋 深圳市育才中学 黄俊芳.
DNA分子的结构和复制 DNA分子的结构和复制 水电十一局中学 水电十一局中学 马月青.
第八章 DNA的复制和修复 第一节 DNA的复制 第二节 DNA的损伤及修复.
教学目标 1. 掌握基因的含义,以及基因、DNA、染色体之间的关系 2. 理解基因控制蛋白质合成(转录、翻译的含义、过程)
第4章 基因的表达 第1节 基因指导蛋白质的合成.
第四章 基因的表达 第一节 基因指导蛋白质的合成.
第20讲 基因的表达 长阳一中 黄家国.
基因的表达 凌通课件.
Chapter 30 DNA Replication and repair
十三章 基因及基因突变.
Molecular Mechanism of Disease
第2节 DNA分子的结构和特点.
DNA损伤 、修复与重组.
医 学 遗 传 学 第五章 线粒体遗传病.
第二章 基因突变.
DNA Biosynthesis,Replication
第七章 外源化学物致突变作用 李涛.
第十四章 核酸的生物合成 nucleic acid biosynthesis.
第十三章 DNA的生物合成 第一节 DNA复制的概况 第二节 原核生物DNA的复制 第三节 真核生物DNA的复制 第四节 逆转录作用
第十二章 突变和重组机理 重点:突变的分子机理、重组的分子机 理、基因转变、遗传重组的 Holiday模型,DNA损伤的修复。
DNA Biosynthesis,Replication
第十章 突变和重组机理 §10.1 突变的分子基础 碱基替换(base substitution):一个碱基对被另一碱基对
第十章 基 因 突 变.
第8章 遗传密码 8.1 遗传密码的基本特性.
第三章 遗传的分子基础.
第四章 遗传信息的的复制.
第二节 免疫球蛋白的类型 双重特性: 抗体活性 免疫原性(抗原物质).
专项考能集训(四)  碱基含量及DNA复制有关的计算.
第四章 基因的表达 第1节 基因指导蛋白质的合成.
人教版必修2 第4章 基因的表达 第1节 基因指导蛋白质的合成.
第二节 DNA分子的结构.
勤学精思 好问多练 一轮复习之 遗传、变异与基因工程 课时一、遗传的物质基础.
超越自然还是带来毁灭 “人造生命”令全世界不安
遗传物质--核酸 核酸分子组成 核酸分子结构.
H基因库(重链基因连锁群): --- 第14号染色体 κ基因库(κ链基因连锁群): --- 第2号染色体 λ基因库(λ链基因连锁群):
基因 遗传物质的结构单位和功能单位 肤色 基因 有遗传效应的DNA片段 眼皮单双 血型 控制生物性状 在染色体上呈线性排列.
      基 因 突 变 第一节        基因突变的基本概念 第二节        基因突变的分类 第三节        随机突变 第四节        DNA的定位诱变及点突变技术.
基因信息的传递.
安徽省承担创新发展行动计划项目(XM6)——省级精品在线开放课程«医学遗传学»
第三节 转录后修饰.
电影《侏罗纪公园》中恐龙复活的场景 在现实生活中,我们能不能像电影《侏罗纪公园》中描述的那样,利用恐龙的DNA,使恐龙复活呢?
第一节 突变的分子基础 第二节 遗传重组分子机理 第三节 转座遗传因子 第四节 DNA损伤的修复
讨论:利用已经灭绝的生物DNA分子,真的能够使灭绝的生物复活吗?
Presentation transcript:

第七章 基因突变 基因突变:由于DNA分子中碱基所发生的改变,导致DNA分子结构发生稳定的改变。

基因突变的修复方式:

第一节 基因突变的类型 体细胞突变(somatic mutation) 生殖细胞突变(germ-line mutations) 转换(transition)是指同类碱基之间的替换。 颠换(transversion mutation)是嘌呤与嘧啶之间的替换。 突变类型

从对遗传信息的改变看: 1、同义突变:没有改变产物氨基酸序列 的密码子变化。 2、错义突变:碱基序列的改变引起了产物 点突变中的碱基替代突变可进一步分为: 1、同义突变:没有改变产物氨基酸序列 的密码子变化。 2、错义突变:碱基序列的改变引起了产物 氨基酸序列的密码子变化。 3、无义突变:产生终止密码子的突变。 无义突变中产生UAG的为瑚珀型Amb 无义突变中产生UAA的为赫石型Och 无义突变中产生UGA的为乳石型Opa

中性突变(neutral mutation)多肽链中相应位 点发生的氨基酸的取代并不影响蛋白质的功能; 沉默突变(silent mutation)蛋白质中相应位点 是发生了相同氨基酸的取代,即同义突变。 移码突变(frameshift mutation)由于碱基数目 的改变所引起的密码子阅读框架发生改变。

回复突变与抑制突变 回复突变(reverse mutation), 一类是正向突变(forward mutation)突变方向是从野生型向突变型;另一种是回复突变,其突变方向是从突变型向野生型 抑制突变(suppressor mutation)突变的作用还可以通过其它位点的突变而得到减少或校正。

抑制基因所引起的抑制突变----基因间抑制 抑制基因(suppressor)或称校正基因: 能够逆转或抑制另一个突变效应的基因。 (一)无义抑制(nonsense suppressor) 产生互补于由于突变所产生的无 义密码子的tRNA反密码子的突变 1. tRNA反密码子的突变 2. tRNA其它结构的改变

(二)错义抑制 产生能够互补于由于突变而产生的错义密码子的tRNA反密码子的突变 1.完全恢复活性------氨基酸种类不变 2.部分恢复活性------氨基酸种类变化

(二)错义抑制

抑制突变的特点: 1.不是所有抑制基因都能产生有功能的蛋白质,关键是要看氨基酸取代的情况。 2. 校正的作用不可能是完全的。 ①校正的tRNA分子是有限的而且还要和释放 因子竞争; ②若是错义抑制的话,由于氨基酸发生取 代,使得蛋白质的活性有所降低。 3. 每种抑制tRNA一般都只识别UAG终止密码子,而不再识别原来相应的密码子。

4. 当细胞中含有多个tRNA拷贝时,抑制才能发挥作用。 5. 有的抑制基因,不仅可以识别终止密码子,而且还可以识别原来的密码子。如野生型tRNATrp的反密码子是CCA,它可以识别原来的密码子UGG,而且还可以识别终止密码子UGA。

6.校正基因一般不会影响正常的终止 (1)校正基因识别的终止密码子不一定和正常终止的密码子相同。有时正常终止位点有两个连续的终止密码子,而且结构不同,如UAG-UAA; (2)释放因子将和抑制基因竞争和终止密码子的结合; (3)抑制基因的效率很低,通常为1~5%,所以常不会抑制正常终止。

第二节 突变的原因 一.自发突变(spontaneous mutations) 突变率(mutation rate)是指在单位时间内某种突变发生的概率. (一) DNA复制错误 (二) 自发的化学变化 1. 脱嘌呤(depurination) 2. 脱氨(基)(deamination)作用 3. 氧化作用损伤碱基(oxidatively damaged bases)

(一)DNA复制错误

(二) 自发的化学变化 1.脱嘌呤

2.脱氨基

3.氧化损伤 过氧化物原子团(O2-) (H2O2),(-OH)等需氧代谢的副产物都是有活性的氧化剂, 它们可导致DNA的氧化损伤, T氧化后产生T-乙二醇, G氧化后产生8-氧-7,8二氢脱氧鸟嘌呤

二. 诱发突变 (一) 放射线 紫外线、 X-射线、 γ射线、 宇宙射线 (二) 化学物质 1.碱基类似物 (1) 5-溴尿嘧啶(5-bromouracil,5-BU) (2) 氨基嘌呤(2-aminopurine 2-AP) (3) 迭氮胸苷(AZT, azidothymidine)

2.碱基的修饰剂 (1) 亚硝酸(introus acid, NA) (2) 羟胺 (3) 烷化剂,它们的作用是使碱基烷基化 3.DNA插入剂 原黄素(proflavin) 吖啶橙(acridine orange) 溴化3,8-二氨基-5-乙基-6-苯基菲啶鎓 (etnidium bramide) ICR的复合物等

(一) 紫外线诱发胸苷二聚体

(二) 化学物质 1.碱基类似物 (1)5-溴尿嘧啶和T很相似,仅在第5个碳元子上由Br取代了甲基 5-BU有,酮式,烯醇式两种异构体,可分别与A及G配对结合

(2) 2-氨基嘌呤(2-AP)也是碱基的类似物,有正常状态和稀有状态两种异构体,可分别与T和C配对结合。当2-AP掺入到 DNA复制中时,由于其异构体的变换而导致A∶T G ∶ C

2. 碱基的修饰剂 (1) 亚硝酸(introus acid, NA)有氧化脱氨作用,可使G第2个碳原子上的氨脱去,产生黄嘌呤(xanthine,x),次黄嘌呤 (H) 仍和C配对,故不产生转换突变。但C和A脱氨后分别产生U和次黄嘌呤H,产生了转换,使C∶G转换成A∶T,A∶T转换成G∶C

(2)羟胺只特异地和胞嘧啶起反应,在第4个C原子上加-OH,产生4-OH-C,此产 物可以和A 配对,使C∶G转换成T∶A

(3)烷化剂如甲基黄酸乙脂(EMS),氮芥(NM),甲基黄酸甲脂(MMS),亚硝基胍(NG)等,它们的作用是使碱基烷基化,EMS使G的第6位烷化,使T的第4位上烷化,结果产生的O-6-E-G和 O-4-E-T分别和T、G配对,导致G∶C对转换成A∶T对;T∶A对转换成C∶G

3.DNA 插入剂

4. 体外定点突变 1985年加拿大的Michael Smith建立,于1993年获得了诺贝尔化学奖。 具体方法有三种: (1)聚核苷酸介导的用单链模板定点突 变; (2)双引物法定点突变; (3)用掺入U的单链为模板进行聚核苷 酸介导的体外定点突变。

第三节 DNA的修复机 一.直接修复(Direct repair) (一) 通过DNA聚合酶校正修复 (二)光复活反应 光复活(photoreactivation)或光修复(light repair) 光裂合酶(photolyase),由phr 基因编码 烷基转移酶(Alkyltransferases)

二. 切除修复(excixion-repair) (一) 一般切除修复 切除修复(excixion-repair) 暗修复(dark repair) 短-补丁修复(short-patch repair) 长-补丁修复(long-patch repair) 着色性干皮病(Xeroderma pigmentosum)是一种切除修复酶的缺陷

在E.coli中的切除修复系统 切除:外切酶除去切口间的DNA 损伤:突变的碱基错配或改变DNA结构 合成:DNA pol 合成取代DNA 剪切:内切酶在损伤碱基位点两侧剪切 连接酶封闭缺口

Uvr系统在修复各阶段中的作用 UvrAB识别损伤; UvrBC在DNA上切一缺口; UvrD使被标记区解旋

(二) 特殊切除修复途径 (1) AP核酸内切酶修复途径 AP位点 :无嘌呤(apurinic)和 无嘧啶(apyrimidinic)位点 (2) 糖基酶修复途径

三、复制后修复 (一) 错配修复(mismatch repair) (1) 识别错配的碱基对; (2) 对错配的一对碱基要能准确区别哪一个 是错的,哪一个是对的; (3) 切除错误的碱基,并进行修复合成。

MutS识别错配 位点,并易位到 GATC位点。 MutH在GATC 位点剪切非甲 基化链,内切酶从GATC到错配位点降解 DNA MutL MutS识别错配 位点,并易位到 GATC位点。 MutH在GATC 位点剪切非甲 基化链,内切酶从GATC到错配位点降解 DNA MutS MutH

(二)重组修复(recombination-repain)

在E.coli中的提取(retrival)系统

(三) SOS修复系统 差错倾向修复(Error prone repair) Jeam Weigle 等发现 UV λ噬菌体 细菌(UV未照射过) - 存活率低 UV-复活(UV-reactivation),也称W-复活 SOS反应(SOS response)