邻近宇宙线源对高能电子的贡献 毕效军 粒子天体中心,中科院高能所 山东大学国际交流中心,威海 2017/9/21-23
空间实验: PAMELA卫星和AMS-02 TRD TOF Tracker RICH ECAL e+ p AMS
地面实验:HESS、CTA、LHAASO等
Measurement of cosmic electron and positron spectra by AMS-02
暗物质湮灭产生正负电子对 Final states are positron, electron, gamma, neutrinos, antiproton et al.
PWN as Electron and Positron Source PWN (pulsar wind nebula)
1409.6248 Pulsar and DM are two typical benchmark model.
Conclusions of the quantitative study II Both astrophysical sources, like pulsars, or dark matter can give good fit the AMS-02 data. AMS02 data can not distinguish the two scenarios.
不同源的性质不同,可能高能电子贡献能谱的结构 高能只能来自邻近,具有方向性
Parameters of SNRs Flux at 3TeV
FITTING TO AMS-02 Vela YZ model
FITTING TO AMS-02 Vela YZ + Monogem Ring model (ɑ=0.53)
FITTING TO AMS-02 Vela YZ + Loop I model (ɑ=0.735)
Strong constraints on the vela XY contribution to AMS-02 lepton data
Fitting to present data implies constraint from HERD
Predictions above TeV Vela YZ top left: top right: bottom left: bottom right:
Predictions above TeV from Vela X left: right:
High energy bump and anisotropy constraint by Fermi and HERD
HESS result of cutoff of electron spectrum
总结 高能电子只能来自于邻近的某些个别宇宙线源的贡献,可能在高能处有某些结构的存在 通过空间或者地面实验测量这些结构和各向异性可能确定邻近源的贡献。
暗物质卫星简介 暗物质粒子探测卫星(简称DAMPE)是中国科学院空间科学先导专项之一,其主要科学目标是开展高能电子、宇宙线粒子和伽玛射线的观测,进而探寻暗物质存在的证据,并研究其空间分布特性,同时也可开展高能宇宙线、伽马天文的研究。 该卫星于2015年12月17日发射。发射后,在轨测试标定工作1~2个月,之后进入常管模式。 高能电子探测指标 探测能区:5~10,000GeV; 能量分辨率:1.5%@800GeV; 本底抑制能力:大于100,000; 几何因子:大于0.3m2.sr。
HERD concept Aim: a flagship and landmark scientific experiment onboard the China's Space Station Sciences Indirect dark matter search with unprecedented sensitivity Precise cosmic ray spectrum and composition measurements up to the knee energy Gamma-ray monitoring and survey Unique capabilities Direct PeV CR observation with best energy resolution Low energy gamma ray observation Largest geometric factors for electrons and cosmic rays Planned launch 2022-2025; 10+ years lifetime
HERD与其他同类实验的基本性能对比 实验(运行时间) 探测能区(e/γ) 能量分辨(e/γ) e/p鉴别 电子有效接收度m2sr 美国卫星FERMI (2008) 1GeV-300GeV 10% 10-3 0.9 -- ISS-AMS-02 (2011) 1GeV-1TeV 2% 10-6 0.12 ISS-CALET (2015) 1GeV-10TeV 10-5 中国卫星DAMPE(2015) 10GeV-10TeV 1% 0.3 0.2 ISS-CREAM (2017) 100TeV(p) 中国空间站HERD (2023) 10GeV-10TeV (e/γ) 3PeV (p) >3 >2
Electron spectrum expected in 3 yrs
Not easy to have this cut at spectrum
What Tools Do We Use? Auger and HiRes measure the highest energy cosmic ray flux, spectrum, and anisotropy ICECube searches for TeV neutrino sources – the most direct signature of hadronic accelerators Fermi detects thousands of new GeV sources VERITAS, HESS, MAGIC, and CANGAROO image and measure spectra and variability of TeV sources Milagro/HAWC, As/ARGO image large-scale structures and searches for new and transient TeV sources AMS-02 (space-based antimatter search ), PAMELA measure ANTIPROTON, POSITRON PLANCK/SNAP
银河系宇宙线传播 带电粒子在银河系磁场中以扩散方式传播,传播方程为 对流 碰撞 源 扩散 重加速 能量损失 衰变
传播参数 e+ 射 线 Sec/prim 将敏感地依赖于传播模型, 所以常被用于决定模型参量.B/C, 10Be/9Be 是目前测量得最好的. 传播参数 宇宙线粒子传播 射 线 e+