子博弈完美Nash均衡 我们知道,一个博弈可以有多于一个的Nash均衡。在某些情况下,我们可以按照“子博弈完美”的要求,把不符合这个要求的均衡去掉。 扩展型博弈G的一部分g叫做一个子博弈,如果g包含某个节点和它所有的后继点,并且一个G的信息集或者和g不相交,或者整个含于g。 一个Nash均衡称为子博弈完美的,如果它在每.

Slides:



Advertisements
Similar presentations
Unit 4 Finding your way Integrated skills New words and phrases: past prep. 在另一边,到另一侧 treasure n. 宝藏 turning n. 转弯处 traffic n. 交通,来往车辆 traffic lights.
Advertisements

高考短文改错专题 张柱平. 高考短文改错专题 一. 对短文改错的要求 高考短文改错的目的在于测试考生判断发现, 纠正语篇中 语言使用错误的能力, 以及考察考生在语篇中综合运用英 语知识的能力. 二. 高考短文改错的命题特点 高考短文改错题的形式有说明文. 短文故事. 书信等, 具有很 强的实用性.
期末考试作文讲解 % 的同学赞成住校 30% 的学生反对住校 1. 有利于培养我们良好的学 习和生活习惯; 1. 学生住校不利于了解外 界信息; 2 可与老师及同学充分交流有 利于共同进步。 2. 和家人交流少。 在寄宿制高中,大部分学生住校,但仍有一部分学生选 择走读。你校就就此开展了一次问卷调查,主题为.
课程:博弈论 教材:《经济博弈论》 《经济博弈论习题指南》 复旦大学出版社. 第一章 导论 博弈论定义 经典博弈模型 博弈结构与分类 博弈论历史与发展 博弈论在中国的发展.
第七课:电脑和网络. 生词 上网 vs. 网上 我上网看天气预报。 今天早上看了网上的天气预报。 正式 zhèngshì (报告,会议,纪录) 他被这所学校正式录取 大桥已经落成,日内就可以正式通车 落伍 luòw ǔ 迟到 chídào 他怕迟到,六点就起床了.
中考英语补全对话、 书面表达命题与备考 宝鸡市教育局教研室 任军利
2014 年上学期 湖南长郡卫星远程学校 制作 13 Getting news from the Internet.
-CHINESE TIME (中文时间): Free Response idea: 你周末做了什么?
┃陈述句┃ 陈述句是用于陈述事实和观点的句子。包括肯定结构和否定结构。肯定句变否定句的基本方法如下: 1.be 动词的否定式:在be动词后面加否定词not。如:We aren't classmates. 我们不是同学。 2.情态动词的否定式:在情态动词后面直接加否定词not。如: I can't speak.
我们会赞叹生命之花的绚丽和多姿,也会歌颂生命之树的烂漫和青翠,但是生命是如此脆弱……
「拈」:歷史 據說,「拈」遊戲源自中國,經由被販賣到美洲的奴工外傳。所以這個小遊戲先在工人間流行,他們就地取材撿小石子來玩。後來流傳到上流人士,改以銅板在酒吧櫃檯上玩。最有名的玩法是將十二枚銅板分三列排成「三、四、五」的遊戲,如下圖:
完形填空技巧 CET4.
广德二中2006届高考 英语专题复习 单项填空 答题指导.
Chap. 4 Techniques of Circuit Analysis
How can we be a member of the Society? You should finish the following tasks if you want to be a member of the Birdwatching Society.
Unit 9 What does he look like?
专题讲座 武强中学外语组 制作:刘瑞红.
The Effects of Exogenous and Endogenous Uncertainty in Static Games
3-3 Modeling with Systems of DEs
Homework 4 an innovative design process model TEAM 7
Unit 4 I used to be afraid of the dark.
Been During the Vacation?
Module 5 Shopping 第2课时.
Differential Equations (DE)
Chapter 4 歸納(Induction)與遞迴(Recursion)
Do you want to watch a game show?
樹狀結構 陳怡芬 2018/11/16 北一女中資訊專題研究.
MICROECONOMICS Chapter16 Price Control 價格管制.
Dì二十課 看bìng Dì二十课 看bìng
论题1-3 - 常用的证明方法及其逻辑正确性
Interval Estimation區間估計
Lesson 44:Popular Sayings
化工安全与环境 第四章 职业卫生.
十七課 選課(xuǎn kè) 十七课 选课(xuǎn kè)
Zhōng wén kè 中 文 课 Chinese Class 3.
Single’s Day.
Dynamic Games of Incomplete Information -- Chapter 4
客户服务 售后服务.
基于文本特征的英语阅读策略的研究与实践 桐乡市高级中学 胡娟萍
Chapter 5 Recursion.
高中英文第一冊 第六單元 重補修用.
Unit title: 买东西 - Shopping
2 GROUP 身體殘障人士 傷健共融—如何改善肢體殘障人士的生活素質
Mechanics Exercise Class Ⅰ
BORROWING SUBTRACTION WITHIN 20
政治大學公企中心財經學分班 課程名稱:管理經濟學 MANAGERIAL ECONOMICS
學習目標 瞭解什麼是賽局 知道賽局是如何發展成一們重要的學科 瞭解賽局的本質 熟悉賽局組成的要素 OBJECTIVES.
Topic 8 賽局理論(Ch5).
引導教學實務工作的知識根基 從三個面向來思考: 1.教學中的基礎知識是指什麼? 哪些領域的知識最為關鍵? 2.教師如何實踐及運用這些知識?
计算机问题求解 – 论题 算法方法 2016年11月28日.
U2 Growing pains Reading Ⅱ.
98年國中基測暨新量尺計分方式宣導 宜昌國中 詹如晴老師.
102-2金融法規(2~4) ~03..
九十八年國中基本學力測驗說明 國民中學學生基本學力測驗 推動工作委員會.
冀教版 九年级 Lesson 20: Say It in Five.
Remember the five simple rules to be happy 快樂的五個簡單常規
Mechanics Exercise Class Ⅱ
名词从句(2).
九月十七日 Do now-写中文 Who Name also is/are/am friend.
創造思考的開發與培養.
國立東華大學課程設計與潛能開發學系張德勝
何正斌 博士 國立屏東科技大學工業管理研究所 教授
陳煒 Rose Chen 田小鳳 Rossia Cheng
Class imbalance in Classification
中(zhōng)文(wén)课(kè) Chinese Class 7
『基督徒的奧林匹克』 林前 9:24-27 葉裕波 牧師.
二项式的分解因式 Factoring binomials
多维阅读第13级.
Sun-Star第六届全国青少年英语口语大赛 全国总决赛 2015年2月 北京
Gaussian Process Ruohua Shi Meeting
Presentation transcript:

子博弈完美Nash均衡 我们知道,一个博弈可以有多于一个的Nash均衡。在某些情况下,我们可以按照“子博弈完美”的要求,把不符合这个要求的均衡去掉。 扩展型博弈G的一部分g叫做一个子博弈,如果g包含某个节点和它所有的后继点,并且一个G的信息集或者和g不相交,或者整个含于g。 一个Nash均衡称为子博弈完美的,如果它在每 一个子博弈都给出Nash均衡。

子博弈完美Nash均衡 简例1 (宠坏的孩子)妈妈要孩子上幼儿园,孩子却想上街和其他小朋友玩。这个博弈由孩子的决策开始:如果孩子听话上幼儿园(a),赢得向量是(0,1);如果孩子坚持要上街玩,妈妈可以选择责骂(A)获前就(B),前者导致赢得向量(-1,-1),后者导致赢得向量(1,0)。[参阅下图]

孩子 a b 妈妈 (0,1) A B (-1,-1) (1,0)

子博弈完美Nash均衡 这个博弈的策略型如下: 妈妈 A B a 0, 1 0, 1 孩子 b -1, -1 1, 0

子博弈完美Nash均衡 简例1(续)从策略型看出,这个博弈有两个纯策略Nash均衡(a,A),(b,B)。先来看(a,A),在妈妈决策的单人子博弈中,A的选择并非最优的,因而并不给出这个子博弈的NE;所以(a,A)并非一个SPNE。我们把A叫做空头恐吓。再来看(b,B),容易验证,B的选择给出妈妈单人子博弈的NE,所以(b,B)是子博弈完美的。

子博弈完美Nash均衡 行为混合策略:对于扩展型博弈来说,行为混合策略的概念比上节介绍的混合策略概念更适用。局中人在他的每一个信息集中按照某个概率分布随机地选用各个着,就构成他的一个行为混合策略;也就是说,一个局中人如果有H个信息集,他的一个行为混合策略就包括H个概率分布。行为混合策略集合的维数一般低于混合策略集合的维数。每一个混合策略都存在一个与之等价的行为混合策略;反之,每一个行为混合策略都存在一组混合策略与之等价。

子博弈完美Nash均衡 利用行为混合策略的概念,可以证明子博弈完美Nash均衡的存在性定理。 倒推归纳法:给定一个有限的扩展型博弈,从处于最后决策阶段的某个信息集开始,让局中人选取最优的着(混合着)使他的(期望)赢得最大化;然后用一个终止节点代替从这信息集引申的子博弈树,附上相应的(期望)赢得向量。这种逐步化简博弈树的方法叫做倒推归纳法。

子博弈完美Nash均衡 有完美信息的扩展型博弈:如果一个扩展型博弈中的每一个信息集都只包含一个节点,那么就称它为一个某完美信息的博弈。 关于子博弈完美Nash均衡(SPNE)的存在性和完美信息博伊德SPNE的算法见附录2。 下面用例子说明倒推归纳法的应用。

Game Tree: Examples Q. How to solve it? Two methods: In last Lectures we analyzed games in normal form ~ All the dynamic aspects have been stripped Sometimes it is valuable to analyze games in extensive form with dynamics intact Example. Consider the following two-person non-zero sum game in extensive form to minimize costs Q. How to solve it? Two methods: M1 ~ Convert to normal form M2 ~ Deal directly in extensive form

Q. Major difficulties? Normal form analysis Game in normal form: DM1\2 DM1: 3 strategies, L, M, and R DM2: 23 = 8 strategies Game in normal form: DM1\2 LLL LLR LRL LRR RLL RLR RRL RRR L (0, -1) (-2, 1) M (3, 2) (0, 3) R (2, 1) (-1, 0) Q. Major difficulties? Dimensionality can be very large (Recall the DP example) Dynamic aspects are not appropriately considered Which of the four Nash solutions will actually happen?

The solution process is backward induction To overcome the difficulties, we shall analyze the extensive form directly. How? The solution is unique (0, -1) is not a solution since DM1 who acts first will not select L 2A 2B Extensive form is a reasonable approach for this problem Q. If DM1 selected L, what should DM2 do? How about if DM1 selected M or R? The solution process is backward induction Starting from leaf nodes and work backward until the root node is reached, each time solve a simple problem Then moving forward from the root to obtain the solution

Example. With a slight variation: If DM1 selected M or R, DM2 does not know how DM1 acted 2A 2B Q. How to solve it? Again there are two methods: M1 ~ Convert to a normal form M2 ~ Deal directly in extensive form Normal form analysis: How? DM1: 3 strategies, L, M, and R DM2: 22 = 4 strategies

Game in normal form: Q. Major difficulties? Same as before DM1\DM2 LL LR RL RR L (0, -1) (-2, 1) M (3, 2) (0, 3) R (2, 1) (-1, 0) Q. Major difficulties? Same as before Dimensionality can be very large Dynamic aspects are not appropriately considered

Q. At information set 2A, what should DM2 do? How about at 2B? Q. To analyze the extensive form directly. How? Q. At information set 2A, what should DM2 do? How about at 2B? What should DM1 select? 2A 2B At 2A, DM2 should select L with costs (0, -1) At 2B, DM2 faces the following normal game: DM1\DM2 L R M (3, 2) (0, 3) (2, 1) (-1, 0) Q. What problem does DM1 face? How should he select? The solution process is backward induction

An exercise on backward induction

Subgames and Subgame Perfection for any non-terminal history h is the part of the game that remains after h occurred. Subgames Subgame perfect equilibrium: No subgame can any player do better by choosing a different strategy

Some examples that is not subgames

Location Game Example: Dynamic Game of Perfect Information Grocery Shopping on Market Street Market Street is a one-way street. One-Way Market Street 1 100 Two firms locate grocery stores on Market Street sequentially. That is, first firm 1 locates and then firm 2.

Consumers live along streets 1-100. W i 1 2 3 99 100 Consumers drive to market street, then drive west on market street (there are no left turns onto market street) until they reach a grocery store.

Payoffs An example: Firm 1 locates at 15 and 2 locates at 47. Consumers: 1 consumer uniformly distributed on each street. Firm 1 Firm 2 1 15 47 100 Payoffs An example: Firm 1 locates at 15 and 2 locates at 47. Since firm 1 gets all consumers who live on 15th St, 16th St, …45th St and 46th St. 1(15, 47) = 47-15 = 32. 2 (15, 47) = 101-47 =54

Now let’s use backward induction to find all subgame perfect Nash equilibrium. Recall that subgame perfection is an equilibrium refinement concept. If SGPNE then NE. 1 1 2 i 100 2 2 2 2 100 1 j 2 What are the pay-offs to Player 1? Player 2?

Payoffs: j (i,j) = i-j if i>j (101-i)/2 if i=j 101-j if i<j Payoffs: i (i,j) = 101-i if i>j (101-i)/2 if i=j j-i if i<j i-j 101-i (101-i)/2 Firm j Firm i Firm j Firm i j i 1 i=j 1 100 100 Payoffs: j (i,j) = i-j if i>j (101-i)/2 if i=j 101-j if i<j

Backward Induction Fix a player 2 node i0 (player 1 has located at i0). What maximizes player 2’s payoff? First note that player 2 will always want to be at 1, i0, or i0 + 1. For example suppose player 1 has located at 4 (i.e. player 2 is at node 4). Where will 2 want to locate? Suppose player 1 has located at 75. Where will player 2 want to locate?

Solving the game via backward induction At node i , firm 2 plays j= i+1 if 1 i  50 j= 1 if 51 i  100 Back at firm i’s node: 1(i, j ) = i+1-i if 1 i  50 =101-i if 51 i  100 Therefore unique subgame perfect equilibrium is: firm 1 plays 51 = i* firm 2 plays j=i+1 if 1 i  50 and j=1 if 51 i  100 = j* Note the way in which the strategies are stated.

The end of market street Equilibrium path: firm 1 plays 51, firm 2 plays 1. Payoffs 1(i*, j* ) = 50 and 2 (i*, j*) = 50 Also note that there is no first mover advantage.