--- Chapter 9 Conduction ---

Slides:



Advertisements
Similar presentations
讀經教育  第一組:吳碧霞、陳鍾仁  第二組:吳雪華、謝濰萁  第三組:邱國峰、林佳玫. 不論上智下愚 成功的教育 讓每個孩子 都能成為最優秀的人才.
Advertisements

竹南海濱沙地植物的介紹 苗栗縣竹興國小 李秋蜚. 海濱沙地的環境概況 1. 夏季烈日曝曬極乾旱,冬季寒冷 的東北季風極強勁 。 2. 海風吹拂鹽分高 。 3. 貧瘠 、 水分少 。
DASY4 DASY4 晶復科技 晶復科技 主講人:劉世樺 主講人:劉世樺. 用途  用途 : 用來量測 SAR, 何謂  用途 : 用來量測 SAR, 何謂 SAR (Specific Absorption Rate): 特定吸收率 ( 人體組織吸收行動電話或其他無 線裝置所發出之電磁輻射的速率.
PCBA生產注意事項 QA Rio Chiang Feb. 1,
6.5 密 度.
第四节 眼睛和眼镜.
第四單元 天氣與生活 4-1 觀測天氣.
导热 Heat Conduction.
第 五 章 传 热 Heat Transfer 第一节 传热概述 第二节 热传导 第三节 对流传热 第四节  热交换 第五节 辐射传热.
可持續建築物 活動 1 介紹可持續建築物 活動 2 不要讓我受熱! 活動 3 探究學校和家居的能源效益 活動 4 為甚麼要興建可持續建築物?
盲杖与盲杖技巧.
南京石化交易端 使用手册 ——厦门如意三宝咨询有限公司.
核技术应用与管理 曾志刚.
十二年國民基本教育 高雄區入學方式說明 報告人:中山工商 楊薇主任.
景氣循環 景氣循環 美國景氣循環變化歷程 景氣循環面面觀 景氣循環分析的介紹 總體經濟學 chapter 8 景氣循環.
--- Chapter 10 Convection ---
现代屋顶绿化简介. 城市化进程的加速使城市生态环境不断遭 受破坏,营造以崇尚自然、回归自然为主旨的 绿色生态型城市,已成为城市人居环境建设的 发展趋势。目前城市用地日趋紧张,城市绿地 的发展受到限制,有学者提出了向 “ 第五面 ” (即城市屋顶)索取绿色的设想,屋顶绿化的 概念应运而生。
传 热 学 (Heat Transfer).
2014学年第一学期 徐汇区高中物理工作安排 3/19/2017 7:13 AM
五味子 【来源】 木兰科植物五味子、华中五味子的成熟果实。药材习称“北五味子”、“南五味子”.
导入新课 由于几何光学仪器都是人眼功能的扩展,为了深入了解各类光学仪器,有必要从几何光学的角度了解人眼的构造。
第三章 非稳态热传导 3.1 非稳态导热的基本概念 3.2 零维问题的分析法-集中参数法 3.3 典型一维物体非稳态导热的分析解.
第一节 导热 一、导热的基本概念 1、温度场 概念:某一时刻换热系统中空间一切点温度的分布 情况, 数学表示式: t=f(x,y,z,τ)
定标率的实际应用(量纲分析/半定性的物理学)
A Lesson In a Lab Introduction Vocabulary and Speaking.
Signals and Systems Lecture 28
普通物理 General Physics 25 - Capacitors and Capacitance
Fluid Mechanics (Week 1)
Chapter 9 Vapor Power Cycle 蒸汽动力循环
Purposes of Mold Cooling Design
Short Version : 16. Temperature & Heat 短版: 16.温度&熱量
Part Three: Thermodynamics 第三部:熱力學
Noise & Distortion in Microwave Systems.
普通物理 General Physics 27 - Circuit Theory
Fundamentals of Physics 8/e 27 - Circuit Theory
电子器件与组件结构设计 王华涛 哈尔滨工业大学(威海) 材料科学与工程学院 办公室:A 楼208 Tel:
Short Version : 6. Work, Energy & Power 短版: 6. 功,能和功率
普通物理 General Physics 26 - Ohm's Law
本章主要内容 传热的基本概念 三种传热方式的计算 稳定传热过程计算 列管式换热器的设计和选用.
產品肉厚的考量 製造生產上的影響 產品性能的影響 補強與防止變形的方法
普通物理 General Physics 18 - First Law of Thermodynamics
边界条件/CFX表达式语言 讲座 3.
普通物理 General Physics 30 - Inductance
熱力學 I 溫度與平衡 十八世紀前人類對熱現象的認知還帶有點神秘的色彩在其中,熱力學較科學化的發展可溯源自工業革命時代,人類對熱與機械功之間轉換關連的研究,影響熱力學源起發展的一個非常重要因素為溫度的觀念。 焦爾(Joule)等人的實驗結果與荷姆赫滋(Helmholtz)等的理論研究共同成就了熱現象中的能量守恆的原則,此原則奠下了熱力學第一定律(1942年由Mayer提出)的基礎。
普通物理 General Physics 29 - Current-Produced Magnetic Field
排氣 Vent 為何排氣仍然還是一個問題? Why venting is still a problem ?
參加2006 SAE年會-與會心得報告 臺灣大學機械工程系所 黃元茂教授
瞬态油漆混合器 练习 6.
塑膠材料的種類 塑膠在模具內的流動模式 流動性質的影響 溫度性質的影響
BASIC PRINCIPLES IN OCCUPATIONAL HYGIENE 职业卫生基本原则
Chapter 8 Thermodynamics of High-Speed Gas Flow (第8章 气体和蒸气的流动)
第三章 热量传递 3.1 概述 热量传递的基本方式 1.热量传递的基本方式
First-Law Analysis for a Control Volume
Energy, temperature and hea
句子成分的省略(1).
2015年 食品熱加工專業訓練課程 食品熱加工專業 訓練課程
Fundamentals of Physics 8/e 26 - Ohm's Law
塑料成型工艺与模具设计 无技可施,只能做苦工。 技不如人,只能当学徒。 技高一筹,可以为师父。 技压群雄,可以成大师。
廣翅蠟蟬.
Review Three states of matter are ( ). solid, liquid and gas
第3章 热量传递 西安建筑科技大学 粉体工程研究所.
3-2 一外径为0.3m,壁厚为5mm的圆管,长为5m,外表面平均温度为80℃。200℃的空气在管外横向掠过,表面传热系数h为80W/(m2·K)。入口温度为20℃的水以0.1m/s的平均速度在管内流动。如果过程处于稳态,试确定水的出口温度。水的比定压热容为4184J/(kg·K),密度为980kg/m3。
主讲教师 高前欣 农业与食品科学学院 食品工程学科
Q1: How do we determine the crystal structure?
教育部增置國小圖書教師輔導與教育訓練計畫 圖書資訊利用教育教學綱要及教學設計小組 設計者:臺北市萬興國小曾品方老師
教育部增置國小圖書教師輔導與教育訓練計畫 圖書資訊教育教學綱要及教學設計小組 設計者:臺北市萬興國小 曾品方老師
All things are difficult
这门课学什么 ?.
§2.高斯定理(Gauss theorem) 一.电通量(electric flux) 1.定义:通过电场中某一个面的电力线条数。
Principle and application of optical information technology
Presentation transcript:

--- Chapter 9 Conduction --- Heat Transfer --- Chapter 9 Conduction --- Tutorial

傅里叶定律和导热微分方程的应用 习题课 1. 如图所示的墙壁,其导热系数为50 W/(m.K), 厚度为50mm,在稳态情况下墙壁内一维温度 分布为 t = 200 – 2000 x2 。式中x 的单位为m。 试求 (1)墙壁两侧表面的热流密度; (2)壁内单位体积的内热源生成热。

一维稳态导热 — 平板 习题课 2. 有一锅炉围墙由三层平壁组成,内层是厚度δ1=0.23m, λ1=0.63W/(m.K) 的耐火粘土砖;外层是厚度δ3=0.25m, λ3=0.56W/(m.K)的红砖层;两层中间填以厚度δ2=0.1m, λ2=0.08 W/(m.K)的珍珠岩材料。炉墙内侧与温度为 tf1=520℃的烟气接触,其表面传热系数h1=35W/(m2.K), 炉墙外侧空气温度tf2=22℃,空气侧表面传热系数 h2=15W/(m2.K)。 试求(1)通过该炉墙单位面积的散热损失; (2)炉墙内外表面温度及层与层交界面的温度; (3)画出炉墙内的温度分布曲线。

一维稳态导热 — 平板 习题课 3. 一建筑物墙壁由如图所示的空心砖砌成,空心砖尺寸 300mm×300mm×300mm。设该混凝土导热系数为 0.8W/(m.K),空气当量导热系数为0.28W/(m.K)。设温度 只沿墙壁厚度X方向发生变化,室内温度为25℃,表面传 热系数为10W/(m2.K),室外空气温度为 -10℃,表面传热 系数为20W/(m2.K)。 求通过每块砖的导热量。

一维稳态导热 — 圆筒壁 4. 外径5cm的不锈钢管,外面包扎着厚度为6.4mm 的石棉隔热层,导热系数为0.166W/(m.K), 习题课 一维稳态导热 — 圆筒壁 4. 外径5cm的不锈钢管,外面包扎着厚度为6.4mm 的石棉隔热层,导热系数为0.166W/(m.K), 再外面包扎着厚度为2.5mm的玻璃纤维隔热层, 导热系数为0.0485W/(m.K)。不锈钢管外壁温度 为315℃,隔热层外表面温度为38℃。 试计算石棉-玻璃纤维交界面的温度。

一维稳态导热 5. 蒸汽管道的外直径d1=30mm,准备包两层厚度 都是15mm的不同材料的热绝缘层。a种材料的 习题课 一维稳态导热 5. 蒸汽管道的外直径d1=30mm,准备包两层厚度 都是15mm的不同材料的热绝缘层。a种材料的 导热系数λa = 0.04W/(m.K),b 种材料的导热 系数λb= 0.1W/(m.K)。若温差一定。 试问从减少热损失的观点看下列两种方案: (1)a在里层,b在外层; (2)b在里层,a在外层。哪一种好,为什么?

变导热系数和变截面稳态导热 6. 一高为30cm铝制圆锥台,顶面直径为8.2cm, 底面直径为13cm;底面和顶面温度各自均匀且 习题课 变导热系数和变截面稳态导热 6. 一高为30cm铝制圆锥台,顶面直径为8.2cm, 底面直径为13cm;底面和顶面温度各自均匀且 恒定,分别为520℃和120℃,侧面(曲面)绝 热。试确定通过此台的导热量(铝的导热系数 取为100W/(m.K)。

变导热系数和变截面稳态导热 7. 图中所示为纯铝制作的圆锥形截面。其圆形截面直径为 习题课 变导热系数和变截面稳态导热 7. 图中所示为纯铝制作的圆锥形截面。其圆形截面直径为 D=ax1/2,其中a=0.5m1/2。小端位于x1=25mm处,大端 位于x2=125mm处,端部温度分别为T1=600K和T2=400K, 周侧面隔热良好。 (1)作一维假定,推导用符号形式表示的温度分布T(x) 的表示式,画出温度分布的示意图。 (2)计算传热热流量Q。

一维非稳态热传导 习题课 8. 初始温度为30℃,壁厚为9mm的火箭发动机喷管,外壁 绝热,内壁与温度为1750℃的高温燃气接触,燃气与壁面 间的表面传热系数为1950W/(m2.K)。假定喷管壁可作为 一维无限大平壁处理,材料物性如下:ρ=8400kg/m3, c=560J/(kg.K),λ=24.6W/(m.K)。试确定 (1)为使喷管材料不超过材料允许温度(1000℃)而能 允许的运行时间; (2)在允许时间的终了时刻,壁面中的平均温度梯度与 最大温度梯度。

集总热容系统 习题课 9. 用热电偶测量气罐中气体的温度。热电偶的初始温度 为 20℃,与气体表面的表面传热系数为10W/(m2.K)。 9. 用热电偶测量气罐中气体的温度。热电偶的初始温度 为 20℃,与气体表面的表面传热系数为10W/(m2.K)。 热电偶近似为球形,直径为0.2mm。 试计算热电偶插入10s后,其过余温度为初始过余温度 的百分之几?要使热电偶过余温度不大于初始过余温度 的1%,至少需要多长时间? 已知热电偶焊丝的λ= 67W/(m.K),ρ=7310kg/m3, c=228J/(kg.K)。

集总热容系统 习题课 10. 一直径为0.5mm的热电偶,其材料的密度ρ= 8930kg/m3, 比热c= 400J/(kg.K)。初始温度为25℃,被突然放于表面 传热系数为95 W/(m2.K),温度为120℃的气流中。 试问热电偶的过余温度为初始过余温度的1%及0.1% 时 需要多少时间?这时热电偶指示的温度是多少?

One-dimensional steady state heat-conduction Tutorial One-dimensional steady state heat-conduction 11. A large window glass 0.5cm thick [λ=0.78W/(m.℃) ] is exposed to warm air at 25℃ over its inner surface, and the heat transfer coefficient for the inside air is 15W/(m2.K). The outside air is -15℃, and the heat transfer coefficient associated with the outside surface is 50W/(m2.K). Determine the temp of the inner and outer surface of the glass.

One-dimensional steady state heat-conduction Tutorial One-dimensional steady state heat-conduction 12. A steel tube[λ=15W/(m.℃)] of outside diameter 7.6cm and thickness 1.3cm is covered with an insulation material [λ=0.2W/(m.℃)] of thickness 2cm. A hot gas at 320℃ with a heat transfer coefficient of 200W/(m2.K) flows inside the tube. The outer surface of the insulation is exposed to cooler air at 20℃ with a heat transfer coefficient of 50W/(m2.K) 。Calculate (1) the heat loss from the tube to the air for a 5-m length of the tube. (2) the temp drops due to the thermal resistances of the hot gas flow, the steel tube, the insulation layer, and the outside air.

One-dimensional steady state heat-conduction Tutorial One-dimensional steady state heat-conduction 13. A Steam pipe with an outside radius of 4cm is covered with a layer of asbestos insulation [λ=0.15W/(m.℃) ] 1cm thick, which is in turn covered with fiberglass insulation [λ=0.05W/(m.℃) ] 3cm thick. The outside surface of the steam pipe is at a temp of 330℃, and the outside surface of the fiberglass insulation is at 30℃. Determine the heat transfer rate per meter length of the pipe and the interface temp between the asbestos and the fiberglass insulation.

One-Dimensional Unsteady State Conduction Problem Tutorial One-Dimensional Unsteady State Conduction Problem 14. A steel plate [a=1.2×10-5m2/s,λ=43W/(m.℃), cp=465J/(kg.℃) , ρ=7833kg/m3] of thickness 10cm, initially at a uniform temp of 240℃, is suddenly immersed in an oil bath at 40℃. The convection heat transfer coefficient between the fluid and the surface is 600W/(m2.℃). (a) How long will it take for the center-plane to cool to 100℃? (b) What is the temp at a depth 3cm from the outer surface? (c) Calculate the energy removed from the plate during this time .

Lumped system analysis Tutorial Lumped system analysis 15. Using lumped system analysis, determine the time required for a solid steel ball of radius R=2.5cm, λ=54W/(m.℃),ρ=7833kg/m3, and c=0.465kJ/(kg.℃) to cool from 850℃ to 250℃ if it is exposed to an air stream at 50℃ having a heat transfer coefficient h=100W/(m2.℃).

Lumped system analysis Tutorial Lumped system analysis 16. A Large aluminum plate [ λ=204W/(m.℃), ρ=2702kg/m3, and c=0.896kJ/(kg.℃) of thickness L=0.1m, that is initially at a uniform temperature of 250℃ is cooled by exposing it to an air stream at temperature 50℃ . Using lumped system analysis, determine the time required to cool the aluminum plate to 100℃ if the heat transfer coefficient between the air stream and the plate surface is h=80W/(m2.℃).

Lumped system analysis Tutorial Lumped system analysis 17. A 6-cm-diameter steel ball [λ=61W/(m.℃), ρ=7865kg/m3, and c=0.46kJ/(kg.℃) is at a temperature of 800℃. It is to be hardened by suddenly dropping it into an oil bath at a temperature of 50℃. If the quenching occurs when the ball reaches a temperature of 100℃ and the heat transfer coefficient between the oil and the sphere is 500W/m2.℃, determine how long the ball should be kept in the oil bath. If 100 balls are to be quenched per minute, determine the rate at which heat must be removed from the oil bath in order to maintain the bath temperature at 50℃.

Lumped system analysis Tutorial Lumped system analysis 18. A thermocouple is to be used to measure the temperature in a gas stream. The junction is approximated as a sphere with thermal conductivity of 25W/(m.℃), density of 9000kg/m3, and specific heat of 0.35kJ/(kg.℃). The heat transfer coefficient between the junction and the gas is 250W/(m2.℃). Calculate the diameter of the junction if the thermocouple should measure 95 percent of the applied temperature difference in 3s.

Lumped system analysis Tutorial Lumped system analysis 19. The temperature of a gas steam is to be measured by a thermocouple whose junction can be approximated as a 1-mm-diameter sphere, The properties of the junction are λ=35W/(m.℃), ρ=8500kg/m3, and cp=320kJ/(kg.℃), and the convection heat transfer coefficient between the junction and the gas is h=210 W/(m2.℃). Determine how long it will take for the thermocouple to read 99 percent of the initial temperature difference.