运算放大器 ——有源、多动能、集成电路.

Slides:



Advertisements
Similar presentations
第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
Advertisements

任务一 插装与调试单极负反馈放大电路 模块Ⅰ模电 项目三 负反馈放大电路 【学习目标】 1. 了解反馈电路的组成及其基本关系式。
第二章 运算放大器 2016年5月20日.
第三十讲 复习与考试.
同相输入比例运算电路 执讲人;李先知 组 别: 电子电工组 丰县职教中心 制作.
1.8 支路电流法 什么是支路电流法 支路电流法的推导 应用支路电流法的步骤 支路电流法的应用举例.
7 反馈放大电路 7.1 反馈的基本概念与分类 7.2 负反馈放大电路的方框图及增 益的一般表达式 7.3 负反馈对放大电路性能的改善
CTGU Fundamental of Electronic Technology 2 运算放大器.
电子技术 模拟电路部分 第四章 差动放大器与 集成运算放大器.
7.1 概述 7.2 基本运算电路 7.3* 模拟乘法器及其应用 7.4 有源滤波电路 7.5* 电子信息系统预处理中所用放大电路.
第七章 信号的运算与处理电路 7.1 比例电路 7.2 基本运算电路 7.3 对数和反对数电路 7.4 集成模拟乘法器 7.5 有源滤波器.
第五章 模拟集成电路基础 集成电路运算放大器中的电流源 差分式放大电路 集成运算放大器.
项目4 温度指示器的制作与 调试 每当季节更替,气候变化时,令人想回忆过去的往事。利用集成运放的应用电路,制作一款温度指示器,随时陪伴在你的身边,让你觉得总有“人”关心你,提示你“寒”“暑”间的温度变化。其实,时至今日,集成运放在各种放大器、比较器、振荡器、信号运算电路得到了广泛应用,成为一种通用性很强的基本集成电路。
4.3 集成运算放大器 集成运放的组成 4.3.2集成运放的基本特性 4.3.3放大电路中的负反馈
第2期 第1讲 电源设计 电子科技大学.
3.7叠加定理 回顾:网孔法 = 解的形式:.
放大电路中的负反馈 反馈的概念 反馈的类型及其判定 负反馈对放大电路性能的影响 负反馈的典型应用.
运算放大器与受控电源 实验目的 实验原理 实验仪器 实验步骤 实验报告要求 实验现象 实验结果分析 实验相关知识 实验标准报告.
6.1基本运算放大电路 6.2集成运算放大器组成的运算电路在实际工程中的应用
现代电子技术实验 4.11 RC带通滤波器的设计与测试.
第 11 章 运算放大器 11.1 运算放大器简单介绍 11.2 放大电路中的负反馈 11.3 运算放大器在信号方面的应用
第17章 电子电路的反馈 17.1 反馈的基本概念 17.2 放大电路的负反馈 17.3 振荡电路的正反馈.
引入负反馈,可以大大改善放大电路的性能。
第七章 集成运算放大器 第一节 直接耦合放大电路与差动放大电路 第二节 集成运算放大器简介 第三节 集成运放在信号运算电路中的应用
运算放大器的特点:把输入、放大、输出和各种保护电路及反馈电路集成在一个芯片上
第12章 集成运算放大器 本章主要内容 本章主要内容有三个方面:一是介绍集成运算放大器的基本组成、传输特性、主要参数、理想化模型以及它的分析依据;二利用运算放大器构成各种应用电路,如信号运算电路、信号处理电路等;三是介绍运算放大电路中的负反馈和负反馈对放大电路工作性能的改善。
图4-1 带有电压串联负反馈的两级阻容耦合放大器
iC iB ib iB uBE uCE uBE uce t uce t 交流负载线,斜率为-1/(RC //RL)
第二章(2) 电路定理 主要内容: 1. 迭加定理和线性定理 2. 替代定理 3. 戴维南定理和诺顿定理 4. 最大功率传输定理
集成运算放大器的放大特性.
第17章 集成运算放大器 17-1 集成运算放大器简介 17-2 运算放大器的应用 17-3 集成功率放大器
实验六 积分器、微分器.
第二章(2) 电路定理 主要内容: 1. 迭加定理和线性定理 2. 替代定理 3. 戴维南定理和诺顿定理 4. 最大功率传输定理
电子技术基础模拟部分 1 绪论 2 运算放大器 3 二极管及其基本电路 4 场效应三极管及其放大电路 5 双极结型三极管及其放大电路
§5-4 数/模转换电路(DAC) 学习要点: D/A转换电路原理 倒T型电阻网络D/A.
第二章 双极型晶体三极管(BJT).
确定运放工作区的方法:判断电路中有无负反馈。
第6章 第6章 直流稳压电源 概述 6.1 单相桥式整流电路 6.2 滤波电路 6.3 串联型稳压电路 上页 下页 返回.
第7章 集成运算放大电路 7.1 概述 7.4 集成运算放大器.
国家工科电工电子基础教学基地 国 家 级 实 验 教 学 示 范 中 心
10.2 串联反馈式稳压电路 稳压电源质量指标 串联反馈式稳压电路工作原理 三端集成稳压器
集成运算放大器 CF101 CF702 CF709 CF741 CF748 CF324 CF358 OP07 CF3130 CF347
 实验五 负反馈放大器 主讲教师:凌涛 基础实验教学中心.
第三章:恒定电流 第4节 串联电路与并联电路.
第16章 集成运算放大器 16.1 集成运算放大器的简单介绍 16.2 运算放大器在信号运算方面的应用
第1章 模拟集成运算放大电路.
模拟电子电路及技术基础 孙 肖 子 西安电子科技大学.
第五章 含有运算放大器的电阻电路 5.1 运算放大器的电路模型 5.2 含有运算放大器的电路分析.
实验二 射极跟随器 图2-2 射极跟随器实验电路.
同相输入端的输入信号与输出信号相位相同; 反相输入端的输入信号与输出信号相位相反。
现代电子技术实验 波形发生器 实验目的 方案设计 单元电路 调整测试.
§2.5 二极管应用电路 §2.5.1 直流稳压电源的组成和功能 整 流 电 路 滤 波 电 路 稳 压 电 路 u1 u2 u3 u4
第 8 章 直流稳压电源 8.1 概述 8.2 稳压管稳压电路 8.3 具有放大环节的串联型稳压电路 8.4 稳压电路的质量指标.
第7讲 有源滤波器 基本概念与定义 一阶有源滤波器 二阶有源滤波器.
第五章 含有运算放大器的电阻电路 内容提要 运算放大器的电路模型 理想运放的两条重要规则 含理想运放电路的分析要点 几个典型电路。
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
确定运放工作区的方法:判断电路中有无负反馈。
实验一 单级放大电路 一、 实验内容 1. 熟悉电子元件及实验箱 2. 掌握放大器静态工作点模拟电路调试方法及对放大器性能的影响
模拟电子技术基础 第十讲 主讲 :黄友锐 安徽理工大学电气工程系.
现代电子技术实验 集成运算放大器的放大特性.
第5章 集成运算放大器的应用 5.1 集成运放的理想化及基本电路 5.2 运算电路 5.3 电压比较器 5.4 集成运放的应用常识.
信号发生电路 -非正弦波发生电路.
第四章 MOSFET及其放大电路.
负反馈放大器 教师:褚俊霞.
第7章 负反馈技术.
课程名称:模拟电子技术 讲授内容:放大电路静态工作点的稳定 授课对象:信息类专业本科二年级 示范教师:史雪飞 所在单位:信息工程学院.
9.5 差分放大电路 差分放大电路用两个晶体管组成,电路结构对称,在理想情况下,两管的特性及对应电阻元件的参数值都相同,因此,两管的静态工作点也必然相同。 T1 T2 RC RB +UCC + ui1  iB iC ui2 RP RE EE iE + uO  静态分析 在静态时,ui1=
第6章 集成运算放大器及其应用 集成电路是一个不可分割的整体,具有其自身的参数及技术指标。模拟集成电路种类较多,本章主要介绍集成运算放大器,最后简要介绍了音频放大器、乘法器及三端稳压器。
第 10 章 运算放大器 10.1 运算放大器简单介绍 10.2 放大电路中的负反馈 10.3 运算放大器在信号运算方面的应用
9.6.2 互补对称放大电路 1. 无输出变压器(OTL)的互补对称放大电路 +UCC
Presentation transcript:

运算放大器 ——有源、多动能、集成电路

§1 基本知识 运放的电路符号 ui uo _ +  Ao

一、运放的开环电压传输特性 uo Ao _  uo +UOM ui ui + -UOM  例:若UOM=12V,Ao=106, 则|ui|<12V时,运放 处于线性区。 线性放大区 Ao越大,运放的线性范围越小,必须在输出与输入之间加负反馈才能使其扩大输入信号的线性范围。

电压传输特性 电路模型

二、理想运算放大器 由于运放的开环放大倍数很大,输入电阻高,输出电阻小,在分析时常将其理想化,称其所谓的理想运放。 理想运放的条件 运放工作在线性区的特点 虚短路 虚开路 放大倍数与负载无关。分析多个运放级联组合的线性电路时可以分别对每个运放进行。

理想运放的电压传输特性和电路模型

运放的输入方式

三、线性工作条件 负反馈的作用:

分析运放组成的线性电路的出发点 Ii  _  u+ uo u– + 运放线性应用 虚短路 虚开路 放大倍数与负载无关, 可以分开分析。 信号的放大、运算 有源滤波电路 运放线性应用

§2 信号的运算电路 2.1 比例运算电路 作用:将信号按比例放大。 类型:同相比例放大和反相比例放大。 §2 信号的运算电路 2.1 比例运算电路 作用:将信号按比例放大。 类型:同相比例放大和反相比例放大。 方法:引入深度电压并联负反馈或电压串联负反馈。这样输出电压与运放的开环放大倍数无关,与输入电压和外围网络有关。

_ + 一、反相比例运算电路 1. 放大倍数 uo   R2 R1 RP ui i1 i2 i1= i2 虚开路 虚短路 虚开路 1. 放大倍数 虚开路 uo _ +   R2 R1 RP ui i1 i2 虚短路 i1= i2 虚开路 结构特点:负反馈引到反相输入端,信号从反相端输入。

_ + R2 i2 2. 电路的输入电阻 ri=R1 i1 uo   ui RP =R1 // R2 R1 RP 平衡电阻,使输入端对地的静态电阻相等,保证静态时输入级的对称性。

例:求Au =? 虚短路 虚开路 uo _ +   R2 R1 RP ui R4 R3 i1 i2 i4 i3 M 虚开路 i1= i2

该放大电路,在放大倍数较大时,可避免使用大电阻。但R3的存在,削弱了负反馈。

二、同相比例运算电路 u-= u+= ui 虚短路 _ +   R2 R1 RP ui uo 虚开路 虚开路 结构特点:负反馈引到反相输入端,信号从同相端输入。

三、电压跟随器 结构特点:输出电压全部引到反相输入端,信号从同相端输入。电压跟随器是同相比例运算放大器的特例。 _ +   ui uo 此电路是电压并联负反馈,输入电阻大,输出电阻小,在电路中作用与分离元件的射极输出器相同,但是电压跟随性能好。

2.2 加减运算电路 作用:将若干个输入信号之和或之差按比例放大。 类型:同相求和和反相求和。 方法:可用虚短、虚断的概念来分析,也可用叠加定理

一、反相加法器 R12 _ +  R2 R11 ui2 uo RP ui1 实际应用时可适当增加或减少输入端的个数,以适应不同的需要。

R12 _ +  R2 R11 ui2 uo RP ui1 iF i11 i12 调节反相求和电路的某一路信号的输入电阻,不影响输入电压和输出电压的比例关系,调节方便。

二、同相加法器 - R1 RF + ui1 uo R21 R22 ui2 实际应用时可适当增加或减少输入端的个数,以适应不同的需要。

- R1 RF + ui1 uo R21 R22 ui2 此电路如果以 u+ 为输入 ,则输出为: 流入运放输入端的电流为0(虚开路) 注意:同相求和电路的各输入信号的放大倍数互相影响,不能单独调整。

左图也是同相求和运算电路,如何求同相输入端的电位? - R1 RF + ui1 uo R21 R22 ui2 R´ 提示: 1. 虚开路:流入同相端的电流为0。 2. 节点电位法求u+。

三、单运放的加减运算电路 R2 _ +  R5 R1 ui2 uo ui1 R4 ui4 ui3 R3 R6 实际应用时可适当增加或减少输入端的个数,以适应不同的需要。

R2 _ +  R5 R1 ui2 uo ui1 R4 ui4 ui3 R3 R6 虚开路 虚短路 虚开路

单运放的加减运算电路的特例:差动放大器 _ +   R2 R1 ui2 uo ui1 解出:

例:设计一个加减运算电路, RF=240k,使 uo=10ui1+ 8ui2 - 20ui3 解: (1) 画电路。 - R3 RF + ui1 uo R2 R1 ui2 R4 ui3 系数为负的信号从反相端输入,系数为正的信号从同相端输入。

(2) 求各电阻值。 - R3 RF + ui1 uo R2 R1 ui2 R4 ui3 uo=10ui1+ 8ui2 - 20ui3

单运放的加减运算电路 优点:元件少,成本低。 缺点:要求R1//R2//R5=R3//R4//R6。阻值的调整计算不方便。 改进:采用双运放电路。

四、双运放的加减运算电路 - RF1 + ui1 uo1 R1 ui2 R2 R3 RF2 uo R4 ui3 R5 R6

五、三运放电路 uo2 + A – R RW ui1 ui2 uo1 a b R1 – + A R2 uo

虚短路: uo2 + A – R RW ui1 ui2 uo1 a b 虚开路:

三运放电路是差动放大器,放大倍数可变。 由于输入均在同相端,此电路的输入电阻高。 uo2 uo1 R1 – + A R2 uo

2.3 微分运算电路与积分运算电路 一、微分运算 u i – + uo R R2 i1 iF C u–= u+= 0 抗干扰差

二、积分运算 iF ui - + R R2 C uo i1 应用举例1: t ui 输入方波,输出是三角波。 t uo

TM -Uom 应用举例2:如果积分器从某一时刻输入一直流电压,输出将反向积分,经过一定的时间后输出饱和。 ui U t 积分时限 uo t U 积分时限 t uo TM -Uom 思考:如果输入是正弦波,输出波形怎样,请自己计算。

应用举例3:微分方程模拟求解

积分电路的主要用途: 1. 在电子开关中用于延迟。 2. 波形变换。例:将方波变为三角波。 3. A/D转换中,将电压量变为时间量。 4. 移相。 其他一些运算电路:对数与指数运算电路、乘法与除法运算电路等,将在后面介绍

运算电路要求 1. 熟记各种单运放组成的基本运算电路的电路图及放大倍数公式。 2. 掌握以上基本运算电路的级联组合的计算。 3. 会用 “虚开路(ii=0)”和“虚短路(u+=u–) ”分析给定运算电路的 放大倍数。