The Experimental HWRF System: A Study on the Influence of Horizontal Resolution on the Structure and Intensity Changes in Tropical Cyclones Using an Idealized.

Slides:



Advertisements
Similar presentations
2011年度汇报 科技部973项目 《日地空间天气预报的物理基础与模式研究》 第六课题组:空间天气预报方法和技术的应用与集成研究
Advertisements

--- Chapter 10 Convection ---
广德二中2006届高考 英语专题复习 单项填空 答题指导.
第6章 系统分析 6.1 概述 6.2 逻辑模型 6.3 逻辑结构分析 6.4 用例分析 6.5 概念类分析.
Reference: Bryan, G. H., and R. Rotunno, 2009c: Evaluation of an
綠色創意伙伴Green Creative Partner
《大洋环流和海气相互作用的数值模拟》 第九讲 中高纬度海气相互作用 周天军
Integration of Eco-hydrological Process in Heihe River Basin
IEEE TRANSACTIONS ON MAGNETICS, VOL. 49, NO. 3, MARCH 2013
袁 星 谢正辉,梁妙玲 中国科学院大气物理研究所
地球科學領域開發高中教材及高中生研習活動
Differential Equations (DE)
3. Motion in 2- & 3-D 二及三維運動 Vectors 向量
The Empirical Study on the Correlation between Equity Incentive and Enterprise Performance for Listed Companies 上市公司股权激励与企业绩效相关性的实证研究 汇报人:白欣蓉 学 号:
《大洋环流和海气相互作用的数值模拟》 第九讲 中高纬度海气相互作用 周天军
附加内容 “AS”用法小结(2).
機械波 Mechanical Waves Mechanical wave is a disturbance that travels through some material or substance called the medium for wave. Transverse wave is the.
製程能力分析 何正斌 教授 國立屏東科技大學工業管理學系.
Chapter 1 Introduction to Climate System
Why spacecraft structure fails
報告者:紀瑋欣(Wei-Hsin Chi) 指導老師:楊明仁老師(Prof. Ming-Jen Yang)
普通物理 General Physics 29 - Current-Produced Magnetic Field
Reporter: Prudence Chien
參加2006 SAE年會-與會心得報告 臺灣大學機械工程系所 黃元茂教授
Understanding masses of charm-strange states in Regge phenomenology
A Revised Approach to Ice Microphysical Process for the Bulk Parameterization of Cloud and Precipitation SONG-YOU HONG, JIMY DUDHIA, SHU-HUA CHEN January2004,
New Physics Beyond SM: An Introduction
塑膠材料的種類 塑膠在模具內的流動模式 流動性質的影響 溫度性質的影響
多相流搅拌器 练习 7.
辐射带 1958年:探险者一号、探险者三号和苏联的卫星三号等科学卫星被发射后科学家出乎意料地发现了地球周围强烈的、被地磁场束缚的范艾伦辐射带(内辐射带)。 这个辐射带由能量在10至100MeV的质子组成,这些质子是由于宇宙线与地球大气上层撞击导致的中子衰变产生的,其中心在赤道离地球中心约1.5地球半径。
基于文本特征的英语阅读策略的研究与实践 桐乡市高级中学 胡娟萍
A high payload data hiding scheme based on modified AMBTC technique
IMPROVE-2 期間內於Oregon 海岸山脈 & Cascades的對流動力及地形修改
Mechanics Exercise Class Ⅰ
3.5 Region Filling Region Filling is a process of “coloring in” a definite image area or region. 2019/4/19.
Testing quantum Landauer Principle using
What is the Trigger for Tropical Cyclogenesis?
Dual-Aircraft Investigation of the Inner Core of Hurricane Nobert
L. Ruby Leung and Yun Qian 2003 J.Hydrometeor.,4, 報告:陳心穎
Journal of Applied Meteorology, 39,
島嶼地形對颱風路徑偏折之影響 Huang, Y.-H., C.-C. Wu and Y. Wang 2011: The
Yang, Y., and Y.-L. Chen, 2008: Mon Wea. Rev., 136,
Intercomparison of bulk microphysics schemes in model simulations of polar lows Prudence Chien Wu, L., and G. W. Petty, 2010: Intercomparison.
納莉(2001)颱風之數值模擬研究 A Modeling Study of Typhoon Nari (2001)
Q & A.
Chapter 10 Mobile IP TCP/IP Protocol Suite
数据分析案例介绍·2014 技术及培训专员:甄晓杰
磁星及其活动性的物理本质 —核物理与凝聚态物理的应用
Mechanics Exercise Class Ⅱ
Sensitivity of Orographic Precipitation to Changing Ambient Conditions and Terrain Geometries: An Idealized Modeling Perspective BRIAN A. COLLE 2004 ,JOURNAL.
带有共轭换热的流动(Flow with CHT)
Dual-Doppler radar analysis of a near-shore line-shaped convective system on 27 July 2011, Korea: a case study J-T. Lee et al. (2014) Tellus Paper Review.
96學年度第二學期電機系教學助理課後輔導進度表(三)(查堂重點)
Yang, M.-J., D.-L. Zhang, X.-D. Tang, and Y. Zhang, J. Geophys. Res.
More About Auto-encoder
Reversible Data Hiding in Color Image with Grayscale Invariance
Potential Vorticity Attribution and Causality
课程信息 课程项目 自选还是命题? 云物理 对流云物理 辐射过程 边界层混合 陆面过程 干沉降 湿沉降 对流传输 大气化学过程
Monsoonal influence on Typhoon Morakot (2009). Part II: Numerical study. Liang, J., L. Wu*, X. Ge, and C.-C. Wu, 2011: Monsoonal influence on Typhoon   Morakot.
利用循环Hybrid ETKF-3DVAR 改进黄海海雾数值模拟的初始场
Reference: Bryan, G. H., and R. Rotunno, 2009, The maximum intensity
Fei Chen and Jimy Dudhia April 2001 (Monthly Weather Review) 報告:陳心穎
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
定语从句(4).
Rainfall Simulation Associated with Typhoon Herb( 1996 )near Taiwan
Principle and application of optical information technology
準理想中尺度對流系統中的動量傳輸 Mahoney, K. M., G. M. Lackmann, and M. D. Parker, 2009: The role of momentum transport in the motion of a quasi-idealized mesoscale convective.
Impacts of Evaporation from Raindrops on Tropical Cyclones
Gaussian Process Ruohua Shi Meeting
Hybrid fractal zerotree wavelet image coding
Presentation transcript:

The Experimental HWRF System: A Study on the Influence of Horizontal Resolution on the Structure and Intensity Changes in Tropical Cyclones Using an Idealized Framework Yu-Fen Huang Gopalakrishnan, Sundararaman G., Frank Marks, Xuejin Zhang, Jian-Wen Bao, Kao-San Yeh, Robert Atlas, 2011: The Experimental HWRF System: A Study on the Influence of Horizontal Resolution on the Structure and Intensity Changes in Tropical Cyclones Using an Idealized Framework. Mon. Wea. Rev., 139, 1762–1784.

The Experimental HWRF System: A Study on the Influence of Horizontal Resolution on the Structure and Intensity Changes in Tropical Cyclones Using an Idealized Framework The Experimental Hurricane Weather Research and Forecasting (HWRF) system became operational at NCEP(National Centers for Environmental Prediction) in 2007. Description of HWRF The Hurricane Weather Research and Forecast system (HWRF) became operational at NCEP in 2007. This advanced hurricane prediction system was developed at the NWS/NCEP's Environmental Modeling Center (EMC), in collaboration with NOAA GFDL and the University of Rhode Island, taking advantage of the WRF model infrastructure developed at NCAR. HWRF is a state-of-the-art hurricane model that has the capability to address the intensity, structure, and rainfall forecast problems. The HWRF model is a primitive equation non-hydrostatic coupled atmosphere-ocean model with the atmospheric component formulated with 42 levels in vertical. The model uses the Non-hydrostatic Mesoscale Model (NMM) dynamic core, including its rotated latitude-longitude projection with E-grid staggering. The model has an outer domain spanning about 75° x 75° , with a two-way interactive nest domain of about 6x 6° which moves along with the storm. The stationary parent domain has a grid spacing of 0.18° (about 27 km) while the inner nest domain 0.06° (about 9 km). The model physics is based primarily on physics similar to that in the GFDL hurricane model which includes a simplified Arakawa-Schubert scheme for cumulus parameterization and Ferrier cloud microphysics package for explicit condensation. The Global Forecast System (GFS) planetary boundary layer parameterization is used. The GFDL model scheme is used for surface flux calculations with an improved air-sea momentum flux parameterization in strong wind conditions and a one-layer slab land surface model. Radiation physics are evaluated by the GFDL scheme, which is also used in the NCEP North-American Mesoscale (NAM) model. The NCEP GFS global analysis and the storm message provided by NHC are used to generate initial conditions for the hurricane model. The HWRF system does not use a bogus vortex. Instead, it contains a forecast/analysis cycle in which a 6-h HWRF forecast from the previous cycle provides a first guess to a 3DVAR data assimilation system. The first guess field is relocated and modified so that the initial storm position, structure and intensity conforms to that estimated from the NHC storm message. The initial conditions are calculated by adding the assimilated storm structure back onto the GFS environmental analysis fields. The GFS forecasted fields every 6 hours are used to provide lateral boundary conditions during each forecast. The hurricane model is coupled with a version of the Princeton Ocean Model (POM-TC). In the Atlantic, the POM -TC is configured with 1/6° horizontal grid spacing and 23 vertical sigma levels. The POM-TC is initialized by a diagnostic and prognostic spinup of the ocean circulations using available climatological ocean data in combination with real-time sea surface temperature and sea surface height data. During the ocean spinup, realistic representations of the structure and positions of the Loop Current, Gulf Stream, and warm- and cold-core eddies are incorporated. At this time, the Developmental Testbed Center (DTC) supports the following components of HWRF: WRF V 3.3a (contains the 2011 operational capability with additional bug fixes) WRF Preprocessing System (WPS) Vortex Initialization Gridpoint Statistical Interpolation variational data assimilation system NCEP Coupler POM-TC and its initialization HWRF Post-processing GFDL Vortex Tracker For more information, please refer to the operational HWRF page.

The NMM-WRF nonhydrostatic system of equations is formulated on a rotated latitude-longitude Arakawa E grid. Parameterization: Simplified Arakawa-Schubert (SAS) Ferrier cloud microphysics The Global Forecast System (GFS) planetary boundary layer and GFDL hurrican model surface layer scheme.  GFDL scheme (Here we use NCAR package) HWRF 非靜力平衡系統 The GFDL model scheme is used for surface flux calculations with an improved air-sea momentum flux parameterization in strong wind conditions and a one-layer slab land surface model.

The fundamental features Extreme events Sensitivity experiment

The fundamental features Time series of the vortex developments

10-m height. Tangential wind speed, 17.2, 33, 43, 50, 59 m/s >> 高解析度對於熱帶氣旋強度的變化有明顯的影響

中高層的 tangentially averaged maximum temperature anomaly(K) respect to the far-field environmental temperature 暖心發展使TC迅速增強 24h 前氣旋迅速增強 ,24h後趨於緩慢 迅速加強的階段並沒有解析度的差別,而到了成熟期則開始有差別 (可參照2a,b) A thermal plume is one which is generated by gas rising above heat source. The gas rises because thermal expansion makes warm gas less dense than the surrounding cooler gas.

The fundamental features Time series of the vortex developments Rapid intensification stage

9h 24h Emanuel, 2003: Updrafts near the top of the boundary layer transport moisture and heat into the upper troposphere Thermal anomaly cross section (x-z) (color shaped) Contours are θe 在9到24小時內非常迅速地增強 發展後的結構大致相同 (agree with the reported by Ritchie et al. (2003) for the case of Hurricane Floyd (1999)) 雖然C03和C09在結構上可能有些許差異,但在增強的過程中幾乎是一致的 上升氣流會把boundary layer附近的 moisture 和 heat (higher θe ) 往上傳遞 (Emanuel 2003)

The fundamental features Time series of the vortex developments Rapid intensification stage Mature stage

21h 93h 每6小時平均的二次環流,radial-height cross secion, 色標>>上升速度 At 21h, C09比C03更具完整結構 Smith(1980) 發現絕熱增溫中的浮力會對inward(from the eye wall to the eye)的壓力梯度有反作用。在中高層眼牆附近會有強烈的下沉。 這樣的下沉氣流使颱風眼變得明顯

21h 93h [Eq1] Color: blue>subgradient; red>supergradient 在ABL中,subgradient的風在inflow消失之處變成supergradient 在inflow減弱處的supergradient tangential wind 會隨著上升氣流和outflow加強眼牆的雲

21h 45h 93h [Eq.2] contour >> maximum tangential wind color shaped >> net tangential forcing with frictional effect related to the primary circulation term in Eq. (2) 在45h和93h,C09的最大風速隨高度傾斜較C03嚴重,代表C03的vortex較深較牢固 在inner-core的部分兩者的最大風速較大,但在較外圈(ex: 210 km)兩者差異不大 在兩個CASE中,正貢獻有助於vortex的spinup,但C03在45h和93h近地面的貢獻強於C09 C03比C09還持續增強 >> 解析度對於Coriolis term較敏感,特別是在成熟期 切線風較徑向風對於解析度還要敏感

69h 93h C09和C03在69h和93h (for the analysis of a mature storm)的熱力結構 Color shaded >> mean 相當位溫 Blue contour >> moisture fluxes C03比C09還暖 當core越暖,氣壓就越低,而風也越強(?) 越細的解析度在眼牆不只表現出較強的輻合和近地面較強的tangential wind,還提供了更密、更好的moisture flux gradients(?)

Extreme events

Mean09和mean03的平均上升速度沒有太大的差別 但是瞬間的上升速度最大值卻差了一倍 然而在門檻超過 5 m/s的extreme03 只佔了15% C09在過了第12h以後大於門檻值的幾乎都低於5%,代表之後是隨著平均垂直速度2+-(2~3, 標準差)m/s,從boundary layer帶上來的moisture和heat 低解析度通常都較晚才開始增強as well as 軸對稱model (Rotunno and Emanuel 1987)

Convective parameterization Stronger storm Bigger storm Convective parameterization Description Initial vortex strength (m/s) Initial radius of max wind (km) Convection scheme for the nest Specification Control 20 90 Yes C09,C03 Strong 30 S09,S03 R0 120 R09,R03 No SAS No SAS09,SAS03 Sensitivity experiment

Convective parameterization Stronger storm Bigger storm Convective parameterization S03比起S09增強較多

Stronger storm S03比起S09的inner-core增強較多 兩者的size都比control的還要大

Bigger storm 加大後,R03和R09的Thermal Anomaly幾乎一樣

Bigger storm 比起R03,R09的增強反而較C09好一些

Bigger storm 雖然在強度上看起來S09和S03差不多,但是在極值方面仍然比不過S03 極值所造成的不對稱並不影響storm的增強

Convective parameterization 在SAS09中,Microphysical heating太弱以至於無法維持SAS09的強度 SAS03到後期才有較強的強度

Convective parameterization SAS 提供了額外的heating 在有SAS的情況下增強較快速,SAS03到後期才有與C03前期一樣的強度 在模式中SAS convection scheme不能被忽略

Conclusions 6h→36h →96h 6h→36h →96h Conclusions Conclusions updraft rapid slow Conclusions Conclusions Conclusions Conclusions Conclusion 6h→36h →96h Vortex的發展、增強可以分為快速發展期和成熟期,成熟期的發展速度慢 解析度對一開始迅速增強並沒有太大的影響,但到了後期便有明顯的區別 上升運動是迅速增強的過程中的主角 解析度對模擬出的極值有一定的影響 X resolution impact O resolution impact resolution extreme event

Thanks for your listening.

d

Net tangential forcing