引例 问题1 从甲、乙、丙3名同学中选出2名参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的方法?

Slides:



Advertisements
Similar presentations
第十一课 公正处理民事关系. 听歌曲《我想有个家》,阅读结婚誓词,回答 : 如何才能拥有一个幸福、温馨的家庭? 导 入 导 入 探究活动一:幸福、温馨家庭的讨论 亲情和爱情的精心维护 法律的有力保护 品味 与 感悟 家庭是父亲 的王国,母 亲的世界, 儿童的乐园 。 —— 爱默生.
Advertisements

1.2 应用举例 ( 一 ). 复习引入 B C A 1. 什么是正弦定理? 复习引入 B C A 1. 什么是正弦定理? 在一个三角形中,各边和它所对 角的正弦的比相等,即.
2011年会计初级职称全国统考 初级会计实务 教案 主讲:高峰 2010年12月.
人口与环境 邯郸市第一中学 王贺渠 2015年4月2日.
人力资源管理资格考证(四级) 总体情况说明.
财经法规与会计职业道德 Company Logo.
第一章 专利的种类 一、发明专利 20年 二、实用新型专利 10年 三、外观设计专利 10年
鲁班培训-培训类项目 一级建造师 二级建造师 监理工程师 安全工程师 造价工程师 物业工程师 造 价 员 职称英语
第2讲 中国的文学、艺术、教育 与19世纪以来的世界文艺.
温故而知新: 我国的国家性质是什么? 人民民主专政的国体 国家的一切权利属于人民 决 定 我国政府是人民的政府.
第八章 建设有中国特色的社会主义政治.
阅读题中的 分类讨论思想 主讲:里水中学 林沛娴.
文化在继承中发展.
文化在继承中发展.
服务热线: 菏泽教师招聘考试统考Q群: 菏泽教师统考教育基础模拟题解析.
第二单元 生产、劳动与经营.
第二单元 生产、劳动与经营 第六课 投资理财的选择 一.储蓄存款和商业银行.
会计从业资格 主讲:栗银芳.
第十章 会计档案 本章主要介绍了五方面的内容:(1)会计档案的概念和内容;(2)会计档案归档;(3)会计档案的保管期限;(4)会计档案的查阅、复制和交接;(5)会计档案的销毁 本章属于非重点章, 三年试卷中所占分值各为6分、7分、7分。
报关与报检实务.
当我们深陷房价的困扰 食品安全却令人担忧.
实现人生的华丽转身 —2014年高速公路考试备考指导 中公教育陈修晓.
1.中国古代农业 (1)古代农业耕作方式从刀耕火种到铁犁牛耕的演变。 (2)古代农具的发明、改进,水利工程建设;农作物的培植、引进和推广所涉及的精耕细作的农业生产方式。 (3)小农经济的形成、特点及评价。 (4)古代土地制度从原始社会土地公有制到封建社会的土地私有制。 (5)古代重农政策及以农立国的思想。
问题解决与创造思维 刘 国 权 吉林省高等学校师资培训中心.
第四单元 自觉依法律己 避免违法犯罪.
初级会计实务 第十章 事业单位会计基础 主讲人:杨菠.
第四章 开天辟地的大事变 新文化运动兴起的原因: 一、近代以来,中国先进分子不断向西方寻求真理
第四节 会计监督.
第二单元 动物生命活动的调节和免疫 高等动物的内分泌系统与体液调节.
第十七章 会计政策、会计估计变更和差错更正
企业所得税.
第七课 关注经济发展 造福人民的经济制度 授课教师 张爱岭 辉县市第一初级中学 政治教研组 2013年11月27日.
安全系着你我他 安全教育知识竞赛.
第七章 三角形 复习教学设计.
第一章 民法概述 一、民法概念 P4 二、民法的调整对象 三、民法的分类 四、民法的渊源 P10 五、民法的适用范围(效力范围)
财经法规与会计职业道德 (25) 四川财经职业学院.
第七章 财务报告 财务报告 第一节 财务报告概述 一、财务报告及其目标: 1、概念:财务报告是指企业对外提供的反映企业某一特定日期
线索一 线索二 复习线索 专题五 线索三 模块二 第二部分 考点一 高考考点 考点二 考点三 配套课时检测.
第六课  我国的政党制度.
《做自立自强的人》单元复习.
第十章 行政事业单位会计.
圓的線段乘冪性質.
经济法基础习题课 第7讲 主讲老师:赵钢.
义务教育课程标准实验教科书数学 八年级下册
与三角形有关的内角.
第11章 三角形.
感受身边的数学.
等腰三角形.
三角形全等的判定.
三角形的全等 大綱: 全等的意義 SSS、SAS、ASA、AAS 張婷萱 台灣數位學習科技股份有限公司.
10.2 排列 2006年4月6日.
练习: 由三个不同的英文字母和三个不同的阿拉伯数字组成一个六位号码(每位不能重复),并且3个英文字母必须合成一组出现,3个阿拉伯数字必须合成一组出现,一共有多少种方法?
§3-4三角形的邊角關係 重點:三角形邊角間的不等關係 (1)三角形任意兩邊和大於第三邊 (2)三角形任意兩邊差小於第三邊
5.3 圆周角(2).
圆心角、圆周角 本课内容 本节内容 2.2 ——2.2.2 圆周角.
八年级上册 第十一章 三角形 三角形的内角(第1课时) 湖北省咸宁市咸安区教育局教研室 王格林.
2.2 等腰三角形的性质.
知识点二 国际环境法的实施.
经济法基础习题课 主讲:赵钢.
会计基础 第二章 会计要素与会计等式 刘颖
7.5三角形内角和定理.
基础会计.
全港性系統評估 題型分析 (中三).
§9.3 连续时间系统状态方程的建立 状态方程的一般形式和建立方法概述 由电路图直接建立状态方程 由系统的输入-输出方程或流图建立状态方程
第三章 圆 第三节 圆周角和圆心角的关系(一).
中级会计实务 ——第一章 总论 主讲:孙文静
内角三兄弟之争 在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结。可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?” 老二很纳闷。 同学们,你们知道其中的道理吗?
10.3 水平面上的方位角.
相关知识回顾 1.垂线的定义: 2.线段中点的定义: 3.角的平分线的定义:
2-2 圖形的放大與縮小.
Presentation transcript:

引例 问题1 从甲、乙、丙3名同学中选出2名参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的方法? 问题1 从甲、乙、丙3名同学中选出2名参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的方法? 解决这个问题,需分2个步骤: 第1步,确定参加上午活动的同学,从3人中任选1人有3种方法; 第2步,确定参加下午活动的同学,只能从余下的2人中选,有2种方法. 根据分步计数原理,共有:3×2=6 种不同的方法.

引例 问题2 从a、b、c、d这四个字母中,取出3个按照顺序排成一列,共有多少种不同的挑法? 解决这个问题,需分3个步骤: 第1步,先确定左边的字母,在4个字母中任取1个,有4种方法; 第2步,确定中间的字母,从余下的3个字母中去取,有3种方法; 第3步,确定右边的字母,只能从余下的2个字母中去取,有2种方法. 根据分步计数原理,共有:4×3×2=24种不同的排法.

引例 问题2 从a、b、c、d这四个字母中,取出3个按照顺序排成一列,共有多少种不同的挑法? abc abd acb acd 由此可以写出所有的排列: abc abd acb acd adb adc bac bad bca bcd bda bdc cab cad cba cbd cda cdb dab dac dba dbc dca dcb

例如: 表示的是从5个元素中任取2个元素,并对这 2个元素进行排列的方法数 一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.记为 例如: 表示的是从5个元素中任取2个元素,并对这 2个元素进行排列的方法数

例如: 表示的是从5个元素中任取2个元素,并对这 2个元素进行排列的方法数 对于上述问题,我们也可以从另外一个角度,分步来 解决 第一步:先从5个元素中取出2个元素,有 种不同取法 第二步:对上面取出来的这2个元素进行排列, 有 种不同的方法 排列数与组合数的关系

排列定义 一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列. 排列的定义中包含两个基本内容: 一是“取出元素”;二是“按照一定顺序排列”.“一定顺序”就是与位置有关,这也是判断一个问题是不是排列问题的重要标志. 根据排列的定义,两个排列相同,当且仅当这两个排列的元素完全相同,而且元素的排列顺序也完全相同. 如果两个排列所含的元素不完全一样,那么就可以肯定是不同的排列;如果两个排列所含的元素完全一样,但摆的顺序不同,那么也是不同的排列.

1 北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同的机票?试写出所有情况. 1 北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同的机票?试写出所有情况. 2 由数字1,2,3,4可以组成多少个没有重复数字的三位数? 3 在A、B、C、D四位候选人中,选举正、副班长各一人,共有几种不同的选法?写出所有可能的选举结果.

练习 练习1.下列问题中哪些是排列问题?如果是在题后括号内打“√”,否则打“×”. (1)20位同学互通一封信,问共通多少封信? ( ) (1)20位同学互通一封信,问共通多少封信? ( ) (2)20位同学互通一次电话,问共通多少次? ( ) (3)20位同学互相握一次手,问共握手多少次? ( ) (4)从e,π,5,7,10五个数中任意取出2个数作为对数的底数与真数,问共有几种不同的对数值? ( ) (5)以圆上的10个点为端点,共可作多少条弦? ( ) (6)以圆上的10个点为起点,且过其中另一个点的射线共可作多少条? ( )