概 率 统 计 主讲教师 叶宏 山东大学数学院.

Slides:



Advertisements
Similar presentations
1 教師敘薪 Q & A 教師敘薪 Q & A 新竹縣立新湖國中 陳淑芬 新竹縣立自強國中 楊美娟
Advertisements

103 學年度縣內介聘申請說明會 南郭國小 教務主任張妙芬.  重要作業日程 : 1 、 5/1( 四 ) 前超額學校 ( 含移撥超額 ) 備文函報縣府教 育處輔導介聘教師名單 2 、 5/7( 三 ) 超額教師積分審查( 9 : : 00 、 13 : : 00 )。 3.
大學甄選申請入學 〃備審資料 〃面試. 確認你的追求對象 學校環境概況 系別特質 有無交換學生 未來出路 性質相似的科系要清楚之間的差別 ex: 社會福利學系,社會工作學系, 社會學系.
人文行動考察 羅東聖母醫院 老人醫療大樓 吳采凌 黃玨宸 劉映姍 陳嫚萱.
焦點 1 陸域生態系. 臺灣的陸域生態系 臺灣四面環海 黑潮通過  高溫, 雨量充沛 熱帶, 亞熱帶氣候.
資源問題與環境保育 第 6 章. 學完本章我能 ……  知道中國土地資源的問題與保育  了解中國水資源的問題與保育  知道中國森林資源的問題與保育  能分析自然環境和人文環境如何影響人類 的生活型態  說舉出全球面臨與關心的課題.
高等学校英语应用能力考试 考务培训 兰州文理学院教务处 2014 年 12 月. 考务培训 21 日请监考人员上午 8:00 (下午 2:30 )到综合楼 205 教室集合,查看 监考安排,由考务负责人进行考务 培训。
語言與文化通識報告 - 台日年菜差異 - 指導老師 : 葉蓁蓁 小組 : 日本微旅行 組員 :4a21b032 吳采玲 4a21b037 沈立揚 4a 洪雅芳 4a 陳楚貽 4a 王巧稜.
景美樣品房工程變更 / 追加請款 / 說明 102/08/09 樣品房停工 102/10/10 樣品房完工 102/09/26 向工務部提出 追加工程估價單 102/10/25 經工務部審核 轉送採發部門 102/09/03 工地會議 確認後續施工方式 102/11/ /11/ /12/09.
統計之迷思問題 保險 4B 張君翌. 迷思問題及教學者之對策 常見迷思概念教學者之對策 解題的過程重於答案 例 : 全班有 50 位同學,英文不及格的有 15 人,數學不及格的有 19 人,英文與 數學都及格的有 21 人。請問英文與數 學都不及格的有幾人? 老師常使用畫圖來解決這樣的問題,英文和.
社團法人台南市癲癇之友協會 講師:王乃央老師
寓言 何謂寓言? 寓言中的主角選擇 以動物為主角,形象分析—以成語及諺語中來歸納動物形象 以人為主角,形象分析
第一章 人口与环境 第一节 人口增长模式.
第七章 外營力作用 第一節 風化 第二節 崩壞 第三節 侵蝕與堆積.
物理治療師之僱傭關係 九十二年四月十二日.
勿讓權利睡著- 談車禍之損害賠償與消滅時效.
二、開港前的經濟發展 (一)土地開墾和農業發展 1.漢人移民的遷徙與拓墾 (1)遷徙 A.居住區 a.泉州人最多:沿海
設計新銳能量輔導 實習期中感想 實習生:賴美廷 部落格:TO13004.
105年基北區高中職適性入學宣導 教育會考後相關作業說明
日本的〈地獄劇〉 與 中國的〈目連戲〉.
授課教師:羅雅柔 博士 學員:吳沛臻/邱美如/張維庭/黃茹巧
行政公文 纪 要 讲授人: 安学珍 铜仁职业技术学院.
國小教師檢定經驗分享 分享者:胡瑋婷 現職:國語日報語文中心寫作班教師 閱讀寫作營教材編輯及任課講師 榮獲「教育部教育實習績優獎」全國第三名.
民主政治的運作
教育與學習科技學系 103學年度課程說明 103年9月2日.
國有不動產撥、借用法令與實務 財政部國有財產局 接收保管組撥用科 蔡芳宜.
二代健保補充保費 代扣項目說明 簡報.
第4课 “千古一帝”秦始皇.
公務人員 育嬰留職停薪權益.
大學教、職員之法義務規範與法律效果 台南地檢署林仲斌.
第三課 政府的組織、功能與權限 一、內閣制 壹、民主國家的政府體制 二、總統制 三、混合制 四、小結 一、前言 貳、我國的中央政府體制
明代開國謀臣 劉伯溫 組員:吳政儒 林天財 王鈴秀 陳冠呈 施典均 李孟儒.
企业所得税几项热点难点 业务问题讲析 湛江市地税局税政科 钟胜强.
房地产开发企业 土地增值税清算 (基础篇).
班級老師:潘盈仁 班級:休閒三甲 學號:4A0B0124 學生:柯又瑄
中央與地方教育權限 第八組 王湘婷 邱淑婷 全 彥 洪英博
中國宦官 鄭永富 鄭雅之 莊尉慈.
腐败的食物表面有白色小圆斑点,绿色斑点等
盧世欽 律師 鼎禾律師聯合事務所 民國 一○四 年 九 月 十八 日
簡報大綱 壹、親師溝通 貳、學生不當行為的處理 參、學生輔導 肆、個案研討分析.
教師專業發展評鑑(一) 實施計畫與規準討論
福山國小 100學年度 新生家長始業輔導.
貨物稅稅務法令介紹 竹東稽徵所.
第四章 借贷记账法的应用.
第五章 主要经济业务核算 第一节 筹集资金的核算 第二节 供应过程的核算 第三节 生产过程的核算 第四节 销售过程的核算
九年一貫課程綱要微調 健康與體育領域召集人 「課綱微調轉化」研習
公私立大學特色介紹 (以第二類組為主) 報告人:吳婉綺.
危險情人的特徵 危險情人的特徵.
機關團體所得稅申報實務 中區國稅局苗栗縣分局第一課林天琴.
幼兒環境學習規畫 期末報告 指導老師:蔡其蓁 老師
雕塑你我他.
財政部臺灣省北區國稅局中壢稽徵所 各類所得扣繳暨免扣繳法令.
游子心 中华情 美国大华府地区华人华侨 庆祝中国六十周年华诞.
「103年寒假教育優先區中小學生營隊」 校外補助計畫申請說明會.
水土保持法中「連續處罰」及「限期改正」制度之法律研究
國有公用財產管理及被占用處理暨活化運用法規與實務(含座談) 104年度教育部暨部屬機關學校總務人員研習會-不動產管理班
提升國民小學教師健康教育專業能力三年計畫
在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X的概率分布,那么X的全部概率特征也就知道了.
第七章立体表面的交线 内容提纲 §7-1 截交线 §7-2 相贯线 §7-3 立体表面交线的分析.
馬公高中100學年101大學博覽會 專題演講 演講主題 如何選填適合自己的大學科系
性騷擾防治宣導.
創業環境分析與 風險評估 赫斯提亞負責人:謝馥仲先生 主講 演講時間 : 2008/05/01.
葉脈標本的創意製作.
穿出自我… 高一家政.
國民年金 np97006.
第六章 样本及抽样分布 §2 抽样分布 4) 正态总体的样本均值与样本方差的分布: 定理1.
財政四 徐瑜鴻 財政四 林博硯 財政四 陳玄恩 財政四 王張皓鈞 財政四 李定瑜
品格:熱 性格的培養6親熱就,48頁。 (一)什麼是熱.
北京师范大学珠海分校 国际特许经营学院与不动产学院 学年第二学期 欧阳顺湘
Presentation transcript:

概 率 统 计 主讲教师 叶宏 山东大学数学院

§4.2 方差 我们已经介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,是随机变量的一个重要的数字特征. §4.2 方差 我们已经介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,是随机变量的一个重要的数字特征. 但是在一些场合,仅仅知道平均值 是不够的.

例如,某零件的真实长度为a,现用甲、乙两台仪器各测量10次,将测量结果X用坐标上的点表示如图: 甲仪器测量结果 乙仪器测量结果 较好 若让你就上述结果评价一下两台仪器的优劣,你认为哪台仪器好一些呢? 因为乙仪器的测量结果集中在均值附近

又如,甲、乙两门炮同时向一目标射击10发炮弹,其落点距目标的位置如图: 中心 乙炮 甲炮射击结果 乙炮射击结果 你认为哪门炮射击效果好一些呢? 因为乙炮的弹着点较集中在中心附近 .

为此需要引进另一个数字特征,用它来度量随机变量取值在其中心附近的离散程度. 这个数字特征就是我们要介绍的 方差

1. 方差概念 定义 即 D (X ) = E [X - E(X)]2 若E [X - E(X)]2 存在, 则称其为随机 变量 X 的方差, 记为D (X ) 或 Var (X ) 即 D (X ) = E [X - E(X)]2 称 为 X 的均方差或标准差. D(X ) —— 描述 r.v. X 的取值偏离平均值 的平均偏离程度

若 X 为离散型 r.v.,分布律为 若 X 为连续型r.v. ,概率密度为 f (x) 由定义知,方差是随机变量X的 函数g(X)=[X-E(X)]2的数学期望 . 若 X 为离散型 r.v.,分布律为 若 X 为连续型r.v. ,概率密度为 f (x)

计算方差的一个简化公式 证:D(X)=E[X-E(X)]2 =E{X2-2XE(X)+[E(X)]2} 展开 证:D(X)=E[X-E(X)]2 =E{X2-2XE(X)+[E(X)]2} 期望性质 =E(X2)-2[E(X)]2+[E(X)]2 =E(X2)-[E(X)]2

例 P -1 0 1 0.1 0.8 0.1

例 设随机变量X的密度函数为 求D (X ).

例 设X ~ P (), 求D ( X ). 解

例 设 X ~ U [a,b],求DX. .

例 X ~ E (λ) , 求 E( X ) .

例 设 X ~ N ( ,  2), 求 D( X ) 解

常见随机变量的方差 分布 方差 概率分布 参数为p 的 0-1分布 p(1-p) B(n,p) np(1-p) P() 

分布 方差 概率密度 区间(a,b)上 的均匀分布 E() N(, 2)

(2) 若C是常数,则D(CX)=C2 D(X); 2. 方差的性质 (1) 设C是常数,则D(C)=0; (2) 若C是常数,则D(CX)=C2 D(X); (3) 若X与Y 独立,则 D(X+Y)= D(X)+D(Y). X与Y 不一定独立时, D(X1 +X2 )=? 推广:若X1,X2,…,Xn相互独立,则

例 设X ~ B( n , p),求D(X ). 解一 利用公式求D (X ). 解二 利用性质求D (X ). 引入随机变量 相互独立, 故