§7 算符对易关系;两个力学量同时有确定值 的条件;测不准关系

Slides:



Advertisements
Similar presentations
高三英语有效复习策略 程国学. 一、高考备考的方向把握 1. 认真研究普通高中《英语课程标准》和《福建 省考试说明》关注高考命题原则和发展方向,定 准复习教学起点 1. 认真研究普通高中《英语课程标准》和《福建 省考试说明》关注高考命题原则和发展方向,定 准复习教学起点 一是明确高考英语可能考什么,我们应该怎样准.
Advertisements

考纲研读 语言知识要求 语言运用能力 附录 1: 语音项目表 附录 2: 语法项目表 附录 3: 功能意念项目表 附录 4: 话题项目表 附录 5: 词汇表 听力 阅读 写作 口语.
100 學年度 勞委會就業學程 國際企業管理學系-物業管理學程介紹. 何謂物業管理? 以台灣物業管理學會 所述,物業管理區分為 「物」、「業」、「人」三區塊。台灣物業管理學會 「物」係指傳統的建物設備、設施 「業」為不動產經營的資產管理 「人」則以生活服務、商業服務為主,並以人為 本位連結物與業,形成今日物業管理三足鼎立新.
图书馆管理实务.
行政命令.
共产党领导的多党合作和政治协商制度: 中国特色的政党制度.
主讲:材料工程学院党总支宣传委员、党务秘书 教工党支部书记 王国志 2015年12月7日
普通高中新课程实验 若干问题 广东省教育厅教研室 吴惟粤 2004年4月29日 广州.
前言 採購程序每一環節所涉及人員,無論是訂定招標文件、招標、審標、決標、訂約、履約管理、驗收及爭議處理,如缺乏品德操守,有可能降低採購效率與品質,影響採購目標之達成,甚有違法圖利情事發生,致阻礙政府政策之推動並損害公共利益。因此,較之一般公務人員,採購人員更需遵循較高標準之道德規範。 主講人:林中財.
欢迎新同学.
2015年新课标高考历史试题分析 暨考试方向研判 李树全 西安市第八十九中学.
课题四 以天池、博斯腾湖 为重点的风景旅游区
“健康的基督徒” 入门.
南台科技大學電子工程系 指導老師:楊榮林 老師 學生姓名:蔡博涵 巨物索餌感測裝置(第II版)
2015年汕头一模质量分析会 34(1)题分析 濠江区河浦中学 詹金锋 34(2)题分析 汕头市实验学校 董友军
士師逐個捉(II) 石建華牧師 24/07/2016.
宣讲数学课程标准 增强课程改革意识.
高考地理全国卷和安徽卷 的对比分析及备考策略
快乐生活,快乐学习 《中国古代诗歌散文欣赏》.
班級經營之再思 香港班級經營學會 黃鳳意
佛法原典研習 五陰誦 (II) 2007/5/13 整理此報告的方式 : 主要節錄 果煜法師說法之重點.
请说出牛顿第一定律的内容。.
2014年度合肥市中小学生学业质量 绿色指标测试相关情况说明及考务工作要求
普通高中课改方案介绍.
曾一 陈策 重庆大学计算机学院基础科学系 重庆
高三物理后期复习策略 秦皇岛市实验中学 刘苏祥.
理想与现实 有一所大学叫做“社会”,它教会人们奉承比自己强的,挤兑和自己差不多的,欺凌比自己弱的。
101學年度第二學期 呼吸治療學系 師生座談會 102年5月15日.
第七章 机械加工工艺规程的制定.
武进区三河口中学欢迎您.
家庭教育與服務學習.
压缩语段 II.
普通高中课程改革的方案与推进策略 安徽省教育厅 李明阳.
高校人才培养与学科建设的一些探索 徐哲峰 西北大学数学学院 2015年6月30日.
新课程背景下 高中教务主任工作的思考 南京市教学研究室 陆静.
精彩纷呈的 桂剧和彩调 ——桂林地方戏曲赏析.
網路填報系統學生異動轉銜操作及科技化評量6月 成長測驗施測說明
機械工程學系課程地圖 先進材料與精密製造組 設計分析組 校訂共同必修課程 機械系訂 必修課程 組訂 必修課程 畢業專題 工學院訂必修課程
生命轉化 (II) 天父的心 石建華牧師 13/09/2015.
全国高考语文试卷解析 与备考建议 张彬福.
普通高中校本课程开发与实施 崔允漷 教授、博导 普通高中新课程国家级通识研修专题之一 华东师范大学课程与教学研究所副所长
2015年高考病句题 1.(安徽)下列各句中,没有语病的一句是(4分)( )
*§8 反常二重积分 与反常定积分相同, 二重积分亦有推广到积分区域是无界的和被积函数是无界的两种情形, 统称为反常二重积分.
组员:张若玉 潘思羽 刘慧玲 黄佳丽 王青青 朱娇龙 陈天宇
合肥市第47中学 李 恒
帝國主義 法國大革命 、美國革命.
马克思主义基本原理概论 总复习 孔祥旭
摩西五經系列:申命記.
卫生监督协管服务 张家口市卫生监督所.
檢調機關函調、搜索、約談訊問之認識 (含教師因公涉訟輔助)
日本觀光旅館實習 期間: 2012年7月5日~9月5日 成員: 學生30名+帶隊老師2名.
民法第五章:權利客體 楊智傑.
盡情的敬拜 耶穌,聖潔公義救主, 彰顯神的智慧能力, 祢的愛是何等長闊高深, 滿有豐富無窮的恩典。 耶穌,權柄統管萬有,
高级微观经济学 东北大学工商管理学院 向涛.
研究沙崇學生對生活藝術科的安排的意見及建議
第六章 假設檢定 6.1 假設檢定概論 6.2 檢定統計量 6.3 假設檢定的形式與步驟 6.4 單一樣本之假設檢定
第三章 指數與對數 3-2 指數函數及其圖形.
海 商 法.
第八課: 常見的企業保險保障 II 介紹課題 這是承接上一個關於常見的企業保險保障的課題.
四季現象成因 瞭解造成四季變化的成因.
單雙音節考題評析 台中教育大學 歐秀慧.
第七单元 苏联的社会主义建设 新经济政策; “斯大林模式”。 考试说明: “战时共产主义”政策; 14.俄国十月革命与苏联社会主义建设
高二物理选修3-2 第四章 电磁感应 6 互感和自感 ylm.
第5章 即期匯率的決定(II).
桃園市108學年度國民中學資賦優異學生鑑定家長說明會
四季現象成因 瞭解造成四季變化的成因.
2 地貌與內形力作用.
八、工程督導 8.1.監辦 8.2.審計機關之稽察 8.3.相關機關之查核 8.4.施工查核小組 8.5.採購稽核小組 8.6.工程督導小組
聖本篤堂 主日三分鐘 天主教教理重温 (13) (此簡報由聖本篤堂培育組製作).
香港天主教善別牧民協會
Presentation transcript:

§7 算符对易关系;两个力学量同时有确定值 的条件;测不准关系 §7 算符对易关系;两个力学量同时有确定值 的条件;测不准关系 (一)两个力学量同时有确定值的条件 (二)算符对易关系的物理含义 (三)力学量的完全集合 (四)测不准关系

(一)两力学量同时有确定值的条件 体系处于任意状态 (x)时,力学量 F 一般没有确定值。 如果力学量 F 有确定值, (x)必为 F 的本征态,即 如果有另一个力学量 G 在  态中也有确定值, 则  必也是 G 的一个本征态,即 结论: 当在  态中测量力学量 F 和 G 时,如果同时具有确定值,那么 必是 二力学量共同本征函数。

? (二)两算符对易的物理含义 考察前面二式: 所以 例如: = 0 的态,Y  m = Y00 Lx Lz 同时有确定值。 是特定函数, 非任意函数也! ? 所以 例如: = 0 的态,Y  m = Y00 Lx Lz 同时有确定值。 但是,如果两个力学量的共同本征函数不止一个,而是一组且构成完备系,此时二力学量算符必可对易。

定理:若两个力学量算符有一组共同完备 的本征函数系,则二算符对易。 定理:若两个力学量算符有一组共同完备 的本征函数系,则二算符对易。 证: 由于 n 组成完备系,所以任意态函数 (x) 可以按其展开: 则 因为 (x) 是任意函数

逆定理:如果两个力学量算符对易,则此二算符 有组成完备系的共同的本征函数。 逆定理:如果两个力学量算符对易,则此二算符 有组成完备系的共同的本征函数。 证: 仅考虑非简并情况 即: 考察: 与 n 只差一常数 Gn n 也是 G 的本征函数,同理 F 的所有本征函数 n ( n = 1,2,… )也都是 G 的本征函数,因此二算符具有共同完备的本征函数系.

定理:一组力学量算符具有共同完备本征函数系的充要条件是这组算符两两对易。 例 1: 例 2:

例 3: 例 4:

(三)力学量完全集合 (1)定义:为完全确定状态所需要的一组两两对易的力学 量算符的最小(数目)集合称为力学量完全集。 (1)定义:为完全确定状态所需要的一组两两对易的力学 量算符的最小(数目)集合称为力学量完全集。 三维空间中自由粒子,完全确定其状态需要三个两两对易的力学量: 例 1: 氢原子,完全确定其状态也需要三个两两对易的力学量: 例 2: 例 3: 一维谐振子,只需要一个力学量就可完全确定其状态: (2)力学量完全集中力学量的数目一般与体系自由度数相同。 (3)由力学量完全集所确定的本征函数系,构成该体系态空间的 一组完备的本征函数,即体系的任何状态均可用它展开。

(四)测不准关系 (1)测不准关系的严格推导 (2)坐标和动量的测不准关系 (3)角动量的测不准关系

(1)测不准关系的严格推导 由上节讨论表明,两力学量算符对易则同时有确定值;若不对易,一般来说,不存在共同本征函数,不同时具有确定值。 问题: 两个不对易算符所对应的力学量在某一状态中究竟不确定到什么程度?即不确定度是多少? 不确定度: 测量值 Fn 与平均值 < F > 的偏差的大小。 (1)测不准关系的严格推导 证:

II 测不准关系的严格推导 设二厄密算符对易关系为: 是算符或普通数

最后有: 其中: 测不准关系 均方偏差 由代数二次式理论可知,该不等式成立的条件是系数必须满足下列关系: 对任意实数  均成立 两个不对易算符均方偏差关系式 其中: 测不准关系 均方偏差

(2)坐标和动量的测不准关系 (a)测不准关系 表明:坐标与动量的均方偏差不能同时为零,其一越小, 另一就越大。

(b)线性谐振子的零点能 振子能量 被积函数是x 的奇函数 处 n =0 于是: n 为实

为求 E 的最小值,取式中等号。 则: 求极值: 解得: 二均方偏差不能同时为零,故 E 最小值也不能是零。 因均方偏差不能小于零,故取正 零点能就是测不准关系所要求的最小能量

例1:利用测不准关系证明,在 Lz 本征态 Ylm 下, 〈Lx〉= 〈Ly〉= 0 (c)角动量的测不准关系 例1:利用测不准关系证明,在 Lz 本征态 Ylm 下, 〈Lx〉= 〈Ly〉= 0 证: 由于在 Lz 本征态 Ylm 中,测量力学量 Lz 有确定值,所以Lz 均方偏差必为零,即

例2:L2,LZ 共同本征态 Ylm 下,求测不准关系: 则测不准关系: 平均值的平方为非负数 欲保证不等式成立,必有: 同理: 例2:L2,LZ 共同本征态 Ylm 下,求测不准关系: 解: 由例1 可知:

等式两边右乘 Lx 由对易关系: 将上式两边在 Ylm 态下求平均:

将上式两边在 Ylm 态下求平均: 则测不准关系:

作 业 周世勋《量子力学教程》 第三章作业 见课本