第18章 直流稳压电源 18.1 整流电路 18.2 滤波器 18.3 直流稳压电源.

Slides:



Advertisements
Similar presentations
模拟电子技术(二) 山西综合职业技术学院 电子信息系 2006年10月.
Advertisements

第一章 晶体二极管 1.1 半导体物理基本知识 1.2 PN结 1.3 晶体二极管电路的分析方法 1.4 晶体二极管的应用
模拟电子技术基础.
第 10 章 直 流 电 源.
第十章 直流电源 §1 直流电源的组成及各部分的作用 §2 整流电路 §3 滤波电路 §4 稳压二极管稳压电路 §5 串联型稳压电路
第七章 直流稳压电源 §7.1 直流稳压电源的组成和功能 §7.2 单相整流电路 §7.3 滤波电路 §7.4 稳压电路
第二章 电路的分析方法.
第7讲 第2章电路的分析方法 受控电源电路的分析 海南风光.
电工技术 第三章 正弦交流电路 本章主要介绍正弦交流电路的一些基本概念,提出适应于分析正弦稳态电路的相量法,并应用相量法分析简单的正弦稳态电路,介绍正弦交流电路的功率及提高功率因数的意义和方法,重点讨论正弦交流电路的分析及计算。
第1章 常用半导体器件 1.1 半导体基础知识 1.2 半导体二极管 1.3 半导体三极管 1.4 场效应管.
第7章 常用半导体器件 学习要点 半导体器件工作原理.
实验3.2 电场描绘 实验简介 实验目的 实验原理 实验仪器 实验内容 注意事项 数据处理.
第2章 半导体二极管及直流稳压电源.
第10章 常用半导体器件 本章主要内容 本章主要介绍半导体二极管、半导体三极管和半导体场效晶体管的基本结构、工作原理和主要特征,为后面将要讨论的放大电路、逻辑电路等内容打下基础 。
第五章 常用半导体器件 第一节 PN结及其单向导电性 第二节 半导体二极管 第三节 特殊二极管 第四节 晶体管 第五节 场效应晶体管
3.14 双口网络互联 1、级联 i1a i2a i1b i2b Na Nb i1 i1a i2a i1b i2b i2 Na Nb + +
电工学简明教程(第二版) 秦曾煌 主编 主讲:信息学院 薛亚茹 第0章 绪论——课程介绍.
媒质 4.1 半导体物理基础 导体:对电信号有良好的导通性,如绝大多数金属,电解液,以及电离气体。
实用模拟电子技术教程 副主编: 刘希真 张小冰 主编:徐正惠.
第 10 章 基本放大电路 10.1 共发射极放大电路的组成 10.2 共发射极放大电路的分析 10.3 静态工作点的稳定
第23章 模拟量和数字量的转换 23.1 数—模转换器 23.2 模―数转换器.
第11章 基本放大电路 本章主要内容 本章主要介绍共发射极交流电压放大电路、共集电极交流电压放大电路和差分放大电路的基本组成、基本工作原理和基本分析方法,为学习后面的集成运算放大电路打好基础。
第六章 基本放大电路 第一节 基本交流放大电路的组成 第二节 放大电路的图解法 第三节 静态工作点的稳定 第四节 微变等效电路法
工作原理 静态工作点 RB +UCC RC C1 C2 T IC0 由于电源的存在,IB0 IC IB ui=0时 IE=IB+IC.
(1)放大区 (2)饱和区 (3)截止区 晶体管的输出特性曲线分为三个工作区: 发射结处于正向偏置;集电结处于反向偏置
——2016年5月语音答疑—— 模拟电子技术基础 ——多级放大电路 时 间: :00 — 20:30.
宁波兴港职业高级中学 题目:放大器的静态分析 电工电子课件 主讲:王铖 电工组 《电子技术基础》
第11章 技能训练及应用实践 11.1电阻器、电容器的识别与检测及万用表的使用
第六章 直流电源电路 6.1 直流电源的组成 功能:把交流电压变成稳定的大小合适 的直流电压 交流电源 负载 变压 整流 滤波 稳压 u1
随堂测试.
第 4 章 正弦交流电路.
自动控制原理.
第十四章 放大电路中的负反馈.
电工电子技术基础 主编 李中发 制作 李中发 2003年7月.
第二十九讲 稳压电路.
第6章 正弦电流电路 直流量:大小和方向均不随时间变化(U、I) 直流电路 交流量:随时间周期变化、且平均值为零(u、i)
稳压二极管 U I + - UZ IZ IZ UZ IZmax
放大电路中的负反馈 主讲教师:李国国 北京交通大学电气工程学院 电工电子基地.
第13章 集成运算放大电路.
第17章 集成运算放大器 17-1 集成运算放大器简介 17-2 运算放大器的应用 17-3 集成功率放大器
第 2 章 正弦交流电路 2.1 正弦电压与电流 2.2 正弦量的相量表示法 2.3 单一参数的交流电路
1.2半导体二极管.
第16章 集成运算放大器 16.1 集成运算放大器的简单介绍 16.2 运算放大器在信号运算方面的应用
第七章 直流稳压电源 7.1 整流与滤波电路 7.2 串联式稳压电路 7.3 集成串联式稳压电路 7.4 集成开关式稳压电路 返回.
第7章 数/模与模/数转换器 7.3 模拟开关与采样-保持(S/H)电路 7.1 数/模(D/A)转换器 7.2 模/数(A/D)转换器
第6章 第6章 直流稳压电源 概述 6.1 单相桥式整流电路 6.2 滤波电路 6.3 串联型稳压电路 上页 下页 返回.
常用的直流电动机有:永磁式直流电机(有槽、无槽、杯型、 印刷绕组) 励磁式直流电机 混合式直流电机 无刷直流电机 直流力矩电机
CTGU Fundamental of Electronic Technology 10 直流稳压电源.
第6章 电路的暂态分析 6-1 基本概念及换路定则 6-2 一阶电路的暂态分析 经典法、三要素法 6-3 微分电路与积分电路.
一、实验目的 1、学会负载的星形连接和三角形连接 2、学会三相交流电功率的测量 3、验证对称负载作星形连接时,负载线电压和负载相电压的关系
3.2. 差压变送器 差压变送器用来将差压、流量、液位等被测参数转换为标准的统一信号,以实现对这些参数的显示、记录或自动控制。
自动控制原理 第3章 自动控制系统的数学模型 主讲教师:朱高伟 核桃仁.
第5章 直流稳压电源 概述 直流稳压电源的组成和功能 5.1 整流电路 5.2 滤波电路 5.3 硅稳压管稳压电路
比例、加、减、对数、指数、积分、微分等运算。 信号的运算电路
第5章 正弦波振荡电路 5.1 正弦波振荡电路的基本原理 5.2 RC正弦波振荡电路 *5.4 石英晶体正弦波振荡电路
实验六 RC正弦波振荡器 图6-1 RC串并联选频网络振荡器  .
第二章 基本放大器 2.1 放大电路的基本概念及性能指标 2.2 共发射极基本放大电路 2.3 放大器工作点的稳定
第十章 直流电源 10.1 直流电源的组成 10.2 单相整流电路 10.3 滤波电路 10.4 倍压整流电路 10.5 硅稳压管稳压电路
四 二极管应用电路 1 直流稳压电源的组成和功能 整 流 电 路 滤 波 电 路 稳 压 电 路 u1 u2 u3 u4 uo.
第 12 章 直流稳压电源 12.1 整流电路 12.2 滤波器 12.3 直流稳压电源 12.4 晶闸管及可控整流电路.
第3章 集成运算放大器及其应用 3.1 集成运算放大器简介 3.2 差动放大器 3.3 理想运算放大器及其分析依据
第一章 医学电子仪器与基础电子电路 医学电子仪器的特点 医学电子仪器的分类 半导体器件的基础知识 生物医学放大电路 电子振荡电路
8.3集成运算放大电路 运算放大器大多被制作成集成电路,所以常称为集成运算放大电器,简称为集成运放。在一个集成电路中,可以含有一个运算放大器,也可以含有多个(两个或四个)运算放大器,集成运算放大器既可作直流放大器又可作交流放大器,其主要特征是电压放大倍数高,功率放大很大,输入电阻非常大和输出电阻较小。由于集成运算放大器具有体积小、重量轻、价格低、使用可靠、灵活方便、通用性强等优点,在检测、自动控制、信号产生与信号处理等许多方面得到了广泛应用。
直流斩波电路性能的研究.
9.3 静态工作点的稳定 放大电路不仅要有合适的静态工作点,而且要保持静态工作点的稳定。由于某种原因,例如温度的变化,将使集电极电流的静态值 IC 发生变化,从而影响静态工作点的稳定。 上一节所讨论的基本放大电路偏置电流 +UCC RC C1 C2 T RL RE + CE RB1 RB2 RS ui.
第九章 基本交流電路 9-1 基本元件組成之交流電路 9-2 RC串聯電路 9-3 RL串聯電路 9-4 RLC串聯電路
第7章 波形产生与信号变换电路 7.1 正弦波产生电路 7.2 电压比较器 7.3 非正弦波产生电路 7.4 信号变换电路 7.5 辅修内容
任务4.7  鉴频与鉴相.
第18章 正弦波振荡电路 18.1 自激振荡 18.2 RC振荡电路 18.3 LC振荡电路.
电工学 山东英才学院 机械学院 电气教研室 2019/10/1.
Presentation transcript:

第18章 直流稳压电源 18.1 整流电路 18.2 滤波器 18.3 直流稳压电源

第18章 直流稳压电源 本章要求: 1. 理解单相整流电路和滤波电路的工作原理及 参数的计算; 第18章 直流稳压电源 本章要求: 1. 理解单相整流电路和滤波电路的工作原理及 参数的计算; 2. 了解稳压管稳压电路和串联型稳压电路的工作 原理; 3. 了解集成稳压电路的性能及应用。

第18章 直流稳压电源 小功率直流稳压电源的组成 功能:把交流电压变成稳定的大小合适 的直流电压 交流电源 负载 变压 整流 滤波 稳压 第18章 直流稳压电源 小功率直流稳压电源的组成 交流电源 负载 变压 整流 滤波 稳压 u1 u2 u3 u4 uo 功能:把交流电压变成稳定的大小合适 的直流电压

18.1 整流电路 整流电路的作用: 将交流电压转变为脉动的直流电压。 整流原理: 利用二极管的单向导电性 常见的整流电路: 18.1 整流电路 整流电路的作用: 将交流电压转变为脉动的直流电压。 整流原理: 利用二极管的单向导电性 常见的整流电路: 半波、全波、桥式和倍压整流; 单相和三相整流等。 分析时可把二极管当作理想元件处理: 二极管的正向导通电阻为零,反向电阻为无穷大。

18.1.1 单相半波整流电路 1. 电路结构 3. 工作波形 – + a Tr D uo u b RL io u uo 2. 工作原理 18.1.1 单相半波整流电路 1. 电路结构 3. 工作波形 动画 – + a Tr D uo u b RL io u t O uo O 2. 工作原理 u 正半周,Va>Vb, 二极管D导通; uD O u 负半周,Va< Vb, 二极管D 截止 。

4. 参数计算 (1) 整流电压平均值 Uo (2) 整流电流平均值 Io (3) 流过每管电流平均值 ID (4) 每管承受的最高反向电压 UDRM (5) 变压器副边电流有效值 I

5. 整流二极管的选择 平均电流 ID 与最高反向电压 UDRM 是选择整流二极管的主要依据。 选管时应满足: IOM ID , URWM  UDRM 半波整流电路的优点:结构简单,使用的元件少。 缺点:只利用了电源的半个周期,所以电源利用率 低,输出的直流成分比较低;输出波形的脉动大; 变压器电流含有直流成分,容易饱和。故半波整流 只用在要求不高,输出电流较小的场合。

- - 18.1.2 单相桥式整流电路   1. 电路结构 3. 工作波形 io u a + u uo RL – uo b 18.1.2 单相桥式整流电路 1. 电路结构 3. 工作波形 RL u io uo 1 2 3 4 a b + – u   - uo uD t - 2. 工作原理 u 正半周,Va>Vb,二极管 D1、 D3 导通, D2、 D4 截止 。 uD2uD4

- - 18.1.2 单相桥式整流电路   1. 电路结构 3. 工作波形 RL u io uo 1 2 3 4 a b + – u 18.1.2 单相桥式整流电路 1. 电路结构 3. 工作波形 RL u io uo 1 2 3 4 a b + – u -   uo uD t - 2. 工作原理 u 正半周,Va>Vb,二极 管 1、3 导通,2、4 截止 。 u 负半周,Va<Vb,二极 管 2、4 导通,1、3 截止 。 uD2uD4 uD1uD3

4. 参数计算 (1) 整流电压平均值 Uo (2) 整流电流平均值 Io (3) 流过每管电流平均值 ID (4) 每管承受的最高反向电压 UDRM (5) 变压器副边电流有效值 I

桥式整流电路的优点: (1) 输出直流电压高; (2) 脉动较小; (3) 二极管承受的最大反向电压较低; (4) 电源变压器得到充分利用。 目前,半导体器件厂已将整流二极管封装在一起,制成单相及三相整流桥模块,这些模块只有输入交流和输出直流引线。减少接线,提高了可靠性,使用起来非常方便。

例1:单相桥式整流电路,已知交流电网电压为 220V,负载电阻 RL = 50,负载电压Uo=100V,试求变压器的变比和容量,并选择二极管。 解:变压器副边电压有效值 考虑到变压器副绕组及二极管上的压降,变压器副边电压一般应高出 5%~10%,即取 U = 1.1  111  122 V 每只二极管承受的最高反向电压 整流电流的平均值 流过每只二极管电流平均值

例1:单相桥式整流电路,已知交流电网电压为 220 V,负载电阻 RL = 50,负载电压Uo=100V, 试求变压器的变比和容量,并选择二极管。 可选用二极管2CZ11C,其最大整流电流为1A,反向工作峰值电压为300V。 变压器副边电压 U  122 V 变压器副边电流有效值 I = 1.11 Io= 2  1.11 = 2. 2 A 变压器容量 S = U I = 122  2.2 = 207. 8 V A

试分析图示桥式整流电路中的二极管D2 或D4 断开时负载电压的波形。如果D2 或D4 接反,后果如何?如果D2 或D4因击穿或烧坏而短路,后果又如何? 例2: uo u π 2π 3π 4π t w o uo + _ ~ u RL D2 D4 D1 D3 解:当D2或D4断开后 电路为单相半波整流电路。正半周时,D1和D3导通,负载中有电流过,负载电压uo=u;负半周时,D1和D3截止,负载中无电流通过,负载两端无电压, uo =0。

则正半周时,情况与D2或D4接反类似,电源及D1或D3也将因电流过大而烧坏。 uo + _ ~ u RL D2 D4 D1 D3 如果D2或D4接反 则正半周时,二极管D1、D4或D2、D3导通,电流经D1、D4或D2、D3而造成电源短路,电流很大,因此变压器及D1、D4或D2、D3将被烧坏。 如果D2或D4因击穿烧坏而短路 则正半周时,情况与D2或D4接反类似,电源及D1或D3也将因电流过大而烧坏。

18.1.3 三相桥式整流电路(选讲) 共阴极组 1. 电路 D1 RL uo D6 D3 D5 D4 D2 io C b a u + – 18.1.3 三相桥式整流电路(选讲) 共阴极组 1. 电路 D1 RL uo D6 D3 D5 D4 D2 io C b a u + – o 三相变压器原绕组接成三角形,副绕组接成星形 2. 工作原理 共阳极组 在每一瞬间 共阴极组中阳极电位最高的二极管导通; 共阳极组中阴极电位最低的二极管导通。

o o 2. 工作原理 变压器副边电压 D1 RL uo D6 D3 D5 D4 D2 io C b a u + – o u ua ub 2. 工作原理 变压器副边电压 D1 RL uo D6 D3 D5 D4 D2 io C b a u + – o u o ua ub uC 2  t1 t2 t3 t4 t5 t6 t7 t8 t9 uo o 负载电压 在 t1 ~ t2 期间共阴极组中a点电位最高,D1 导通;共阳极组中b点电位最低,D4 导通。 负载两端的电压为线电压uab。

o o 2. 工作原理 变压器副边电压 D1 RL uo D6 D3 D5 D4 D2 io C b a u + – o u ua ub 2. 工作原理 变压器副边电压 D1 RL uo D6 D3 D5 D4 D2 io C b a u + – o u o ua ub uC 2  t1 t2 t3 t4 t5 t6 t7 t8 t9 uo o 负载电压 在 t2 ~ t3 期间 共阴极组中a点电位最高,D1 导通; 共阳极组中c点电位最低,D6 导通。 负载两端的电压为线电压uaC。

o o 2. 工作原理 变压器副边电压 D1 RL uo D6 D3 D5 D4 D2 io C b a u + – o u ua ub 2. 工作原理 变压器副边电压 D1 RL uo D6 D3 D5 D4 D2 io C b a u + – o u o ua ub uC 2  t1 t2 t3 t4 t5 t6 t7 t8 t9 uo o 负载电压 在 t3 ~ t4 期间 共阴极组中b点电位最高,D3 导通; 共阳极组中c点电位最低,D6 导通。 负载两端的电压为线电压ubC。

o o 2. 工作原理 变压器副边电压 D1 RL uo D6 D3 D5 D4 D2 io C b a u + – o u ua ub 2. 工作原理 变压器副边电压 D1 RL uo D6 D3 D5 D4 D2 io C b a u + – o u o ua ub uC 2  t1 t2 t3 t4 t5 t6 t7 t8 t9 uo o 负载电压 在 t4 ~ t5 期间 共阴极组中b点电位最高,D3 导通; 共阳极组中a点电位最低,D2 导通。 负载两端的电压为线电压uba。

o o 2. 工作原理 变压器副边电压 D1 RL uo D6 D3 D5 D4 D2 io c b a u + – o u ua ub 2. 工作原理 变压器副边电压 D1 RL uo D6 D3 D5 D4 D2 io c b a u + – o u o ua ub uC 2  t1 t2 t3 t4 t5 t6 t7 t8 t9 uo o 负载电压 结论: 在一个周期中,每个二极管只有三分之一的时间导通(导通角为120°)。 负载两端的电压为线电压。

3. 参数计算 (1) 整流电压平均值 Uo (2) 整流电流平均值 Io (3) 流过每管电流平均值 ID (4) 每管承受的最高反向电压 UDRM

18.2 滤波器 交流电压经整流电路整流后输出的是脉动直流,其中既有直流成份又有交流成份。 18.2 滤波器 交流电压经整流电路整流后输出的是脉动直流,其中既有直流成份又有交流成份。 滤波原理:滤波电路利用储能元件电容两端的电压(或通过电感中的电流)不能突变的特性, 滤掉整流电路输出电压中的交流成份,保留其直流成份,达到平滑输出电压波形的目的。 方法:将电容与负载RL并联(或将电感与负载RL串联)。

u >uC时,二极管导通,电源在给负载RL供电的同时也给电容充电, uC 增加,uo= uC 。 18.2.1 电容滤波器 1. 电路结构 3. 工作波形 uo u t O – + a D uo u b RL io ic i + C = uC 2. 工作原理 u >uC时,二极管导通,电源在给负载RL供电的同时也给电容充电, uC 增加,uo= uC 。 u <uC时,二极管截止,电容通过负载RL 放电,uC按指数规律下降, uo= uC 。 二极管承受的最高反向电压为 。

4. 电容滤波电路的特点 (1) 输出电压的脉动程度与平均值Uo与放电时间 常数RLC有关。 RLC 越大  电容器放电越慢  输出电压的平均值Uo 越大,波形越平滑。 为了得到比较平直的输出电压 (T — 电源电压的周期) 近似估算取: Uo = 1. 2 U ( 桥式、全波) Uo = 1. 0 U (半波) 当负载RL 开路时,UO 

采用电容滤波时,输出电压受负载变化影响较大,即带负载能力较差。 结论 (2) 外特性曲线 采用电容滤波时,输出电压受负载变化影响较大,即带负载能力较差。 因此电容滤波适合于要求输出电压较高、负载电流较小且负载变化较小的场合。 Uo o IO 1.4U 有电容滤波 无电容滤波 0.45U (3) 流过二极管的瞬时电流很大 uo t O RLC 越大UO 越高,IO 越大整流二极管导通时间越短 iD 的峰值电流越大。 iD t O 选管时一般取: IOM =2 ID

有一单相桥式整流滤波电路,已知交流电源频率 f=50Hz,负载电阻 RL = 200,要求直流输出电压Uo=30V,选择整流二极管及滤波电容器。 例: u RL uo + – ~ C 解:1. 选择整流二极管 流过二极管的电流 变压器副边电压的有效值 二极管承受的最高反向电压 可选用二极管2CP11 IOM =100mA URWM =50V

例:有一单相桥式整流滤波电路,已知交流电源频率 f=50Hz,负载电阻 RL = 200,要求直流输出电压Uo=30V,选择整流二极管及滤波电容器。 + – ~ C 解:2. 选择滤波电容器 取 RLC = 5  T/2 已知RL = 200 可选用C=250F,耐压为50V的极性电容器

18.2.2 电感电容滤波器 ~ L 1. 电路结构 + u C uo RL – 2. 滤波原理 18.2.2 电感电容滤波器 1. 电路结构 L u RL uo + – ~ C 2. 滤波原理 当流过电感的电流发生变化时,线圈中产生自感电势阻碍电流的变化,使负载电流和电压的脉动减小。 对直流分量: XL=0 ,L相当于短路,电压大部分降在RL上。对谐波分量: f 越高,XL越大,电压大部分降在L上。因此,在负载上得到比较平滑的直流电压。 LC滤波适合于电流较大、要求输出电压脉动较小的场合,用于高频时更为合适。

18.2.3  形滤波器 ~ ~  形 LC 滤波器 + 滤波效果比LC滤波器更好,但二极管的冲击电流较大。 u uo – 18.2.3  形滤波器 L u RL uo + – ~ C2 C1  形 LC 滤波器 滤波效果比LC滤波器更好,但二极管的冲击电流较大。 R u RL uo + – ~ C2 C1  形 RC 滤波器 比 形 LC 滤波器的体积小、成本低。 R 愈大,C2愈大,滤波效果愈好。但R 大将使直流压降增加,主要适用于负载电流较小而又要求输出电压脉动很小的场合。

N1 N3 C2 0.047F D2 D3 D4 D1 2CZ12A×4 N2 FU2 3A 2000F/50V + C1 –24V FU1 1A 直流 24V 交流 ~220V 如图电源输出电压为24V, 电流为1.8A。变压器副绕组N3 的电压约为20V, C2起抑制高频干扰作用;副绕组N2的电压为5.5V,供照明指示灯用。直流 24V电池的极性可任意接入。 交直流收扩两用机电源

18.3 直流稳压电源 稳压电路(稳压器)是为电路或负载提供稳定的输出电压的一种电子设备。 稳压电路的输出电压大小基本上与电网电压、负载及环境温度的变化无关。理想的稳压器是输出阻抗为零的恒压源。实际上,它是内阻很小的电压源。其内阻越小,稳压性能越好。 稳压电路是整个电子系统的一个组成部分,也可以是一个独立的电子部件。

18.3.1 稳压管稳压电路 限流调压 1. 电路 + – UI RL C IO UO u IR R DZ Iz 2. 工作原理 U I 18.3.1 稳压管稳压电路 限流调压 1. 电路 + – UI RL C IO UO u IR R DZ Iz 2. 工作原理 U I UZ 稳压电路 UO = UZ IR = IO + IZ 设UI一定,负载RL变化 RL(IO) IR   UO (UZ )   IZ UO 基本不变 IR (IRR) 基本不变 

18.3.1 稳压管稳压电路 1. 电路 + – UI RL C IO UO u IR R DZ Iz 2. 工作原理 U I UZ 18.3.1 稳压管稳压电路 1. 电路 + – UI RL C IO UO u IR R DZ Iz 2. 工作原理 U I UZ UO = UZ IR = IO + IZ 设负载RL一定, UI 变化  IR  UI UZ   IZ  UO 基本不变 IRR  

3. 参数的选择 (1) UZ = UO (2) IZM= (1.5 ~ 3) IOM (3) UI = (2 ~ 3) UO 适用于输出电压固定、输出电流不大、且负载变动不大的场合。 (4) 为保证稳压 管安全工作 为保证稳压 管正常工作

18.3.2 恒压源 由稳压管稳压电路和运算放大器可组成恒压源。 UO RF R2 R1 + – RL UZ R DZ +U UO RF 18.3.2 恒压源 由稳压管稳压电路和运算放大器可组成恒压源。 UO RF R2 R1 + –   RL UZ R DZ +U UO RF R2 R1 +  –  RL R DZ UZ +U 反相输入恒压源 同相输入恒压源 改变 RF 即可调节恒压源的输出电压。

18.3.3 串联型稳压电路 1. 电路结构 串联型稳压电路由基准电压、比较放大、取样电路和调整元件四部分组成。 Ui T R2 UZ RL 18.3.3 串联型稳压电路 1. 电路结构 串联型稳压电路由基准电压、比较放大、取样电路和调整元件四部分组成。 Ui T R2 UZ RL UO  + – R3 UB DZ Uf R1 调整元件 比较放大 基准电压 取样电路

当由于电源电压或负载电阻的变化使输出电压UO 升高时,有如下稳压过程:UCC=ICRC+UCE 2. 稳压过程 UI T R2 UZ RL UO  + – R3 UB DZ Uf R1 由电路图可知 当由于电源电压或负载电阻的变化使输出电压UO 升高时,有如下稳压过程:UCC=ICRC+UCE UO Uf  UB  IC  UCE  UO 由于引入的是串联电压负反馈,故称串联型稳压电路。

3. 输出电压及调节范围 Ui T R2 UZ RL UO  + – R3 UB DZ Uf R1 输出电压 (Uz≈Uf)

18.3.4 集成稳压电源 单片集成稳压电源,具有体积小,可靠性高,使用灵活,价格低廉等优点。 18.3.4 集成稳压电源 单片集成稳压电源,具有体积小,可靠性高,使用灵活,价格低廉等优点。 最简单的集成稳压电源只有输入,输出和公共引出端,故称之为三端集成稳压器。 1. 分类 输出正电压 78XX 输出负电压 79XX 输出固定电压 输出可调电压 三端稳压器 XX两位数字为输出电压值 (1. 25 ~ 37 V 连续可调)

1 — 公共端 3—输入端 2 —输出端 1—输入端 3 —公共端 2 —输出端 2. 外形及引脚功能 塑料封装 1 — 公共端 3—输入端 2 —输出端 79xx 1—输入端 3 —公共端 2 —输出端 78xx W7800系列稳压器外形 W7900系列稳压器外形

3. 性能特点(7800、7900系列) 输出电流超过 1. 5 A(加散热器) 不需要外接元件 内部有过热保护 内部有过流保护 调整管设有安全工作区保护 输出电压容差为 4% 输出电压额定值有: 5V、6V、 9V、12V 、 15V、 18V、 24V等 。

4. 主要参数 (1) 电压调整率SU(稳压系数) 反映当负载电流和环境温度不变时,电网电压波 动对稳压电路的影响。 0.005~0.02% (2) 电流调整率SI 反映当输入电压和环境温度不变时,输出电流变化时输出电压保持稳定的能力,即稳压电路的带负载能力。 0.1~1.0%

(3) 输出电压 UO (4) 最大输出电流 IOM (5) 最小输入、输出电压差 (Ui -UO ) min (6) 最大输入电压 UiM (7) 最大功耗 PM

5. 三端固定输出集成稳压器的应用 (1) 输出为固定电压的电路 输出为固定正电压时的接法如图所示。 CO W7805 Ci Ui + _ UO 1 2 3 输入与输出之间的电压不得低于3V! 0.1~1F 1F 为了瞬时增减负载电流 时,不致引起输出电压 有较大的波动。即用来 改善负载的瞬态响应。 用来抵消输入端接线 较长时的电感效应, 防止产生自激振荡。 即用以改善波形。

(2)同时输出正、负电压的电路 2 3 220V + C W7815 Ci +15V 1 W7915 CO – 15V 24V 1F

当 IO > IOM时,UR较大,T导通 ,IO=IOM + IC (3)提高输出电压的电路 CO W78XX Ci UI + _ UO 1 2 3 UXX UZ R DZ UXX: 为W78XX固定输出电压 UO= UXX + UZ (4)提高输出电流的电路 IO= I2 + IC CO W78XX Ci UI + _ UO 1 2 3 R UR IC I2 IO T + – 当 IO较小时,UR较小,T截止 ,IC=0。 当 IO > IOM时,UR较大,T导通 ,IO=IOM + IC R 可由功率管 T的UBE和稳压器的IOM确定, 即R  UBE /IOM 。

6. 三端可调输出集成稳压器的应用 CO CW117 Ci Ui + _ UO 3 2 1 Adj R1 R2 240 1µF 0.1µF 流过调整端电流 <100 µA,在要求不高的场合它在R2上的压降可以忽略 2、1两端电压为 1.25V — 基准电压