结构力学 建筑工程系 付向红.

Slides:



Advertisements
Similar presentations
加強輔導課程家長簡介會 時間: 9 月 30 日(二) 晚上 : 6:45 至 8 : 00 地點:禮堂.
Advertisements

第七章 求职方法和技巧 (二) 主讲人:谭琳. 第一节 自荐 一、目前常见的自荐种类 1 .口头自荐 1 .口头自荐 2 .书面自荐 2 .书面自荐 3 .广告自荐 3 .广告自荐 4 .学校推荐 4 .学校推荐 5 .他人推荐 5 .他人推荐.
1  超静定次数的确定及力法基本概念 超静定次数的确定及力法基本概念  超静定梁、刚架和排架 超静定梁、刚架和排架  超静定桁架、组合结构和拱 超静定桁架、组合结构拱  对称结构的计算 对称结构的计算  支座移动和温度改变时的力法计算 支座移动和温度改变时的力法计算  超静定结构的位移计算和计算校核.
第四章 文学类文本阅读 增分突破一 金手一指,让你做好情节作 用分析题.
中小学教育网课程推荐网络课程 小学:剑桥少儿英语 小学数学思维训练 初中:初一、初二、初三强化提高班 人大附中同步课程
竹苗區100學年度擴大高中職 免試入學宣導說明會
2011级高考地理复习(第一轮) 第三篇 中国地理 第一章 中国地理概况 第五节 河流和湖泊.
受益權 自由權 參政權 納稅 平等權 其他基本權 服兵役 2-1人民基本權利 的種類 2-3憲法規定的 人民基本義務 受國民教育
人生格言: 天道酬勤 学院:自动化与电气工程学院 班级: 自师1201 姓名:刘 威.
上海大学2006年硕士研究生招生咨询会.
(教育学博士,曾任中学副校长,兼职南京大学博士后)
健康文明上网 深圳市铁路中学 初一(4)班 黄晓欣.
103-2公證法第四次 大面授補充資料 鄭惠佳老師.
建筑业2007年年报 2008年定报培训会 及 工交城建科 蔡婉妮
貿易自由化的農業調整策略 行政院農業委員會主任委員 陳保基 102年11月13日.
愛之花.
现代企业高级职业经理人系列课程 管人理事与理人管事 —企业高效人力资源管理 主讲人:李青刚 副教授.
聚焦2015年 财税环境下新风险和新机遇 授课老师:于芳芳: 助理黄鸣: (微信)
06学年度工作意见 2006年8月30日.
第三章 弯曲内力.
经济法 工商管理专业核心课程.
四年级数学下册 + ÷ - 乘法运算定律 - × × - + ÷ 宫振艳 绿色圃中小学教育网
中医养生—女性春季养生 课程主讲:左龙艳 中国营养师联盟副秘书长 卫生部中国健康促进与教育协会会员 健康管理师俱乐部理事长
物理精讲精练课件 人教版物理 八年级(下).
连乘、乘加、乘减和把整数乘法运算定律推广到小数
岳阳市教学竞赛课件 勾股定理 授课者 赵真金.
期末测试讲评.
年度培训规划与培训体系建立 主讲:唐惠玲.
成才之路 · 语文 人教版 · 必修2 路漫漫其修远兮 吾将上下而求索.
1 实验目的 观察单缝夫琅和费衍射现象,加深对夫琅和费衍射理论的理解。
企业文化课程介绍 主讲人:闫海 2003年 鞍山科技大学经济管理学院.
一、北大汇丰MBA联合会网页架构设计方案
了解太平天国运动的主要史实,认识农民起义在民主革命时期的作用与局限性。
增分突破二 准确概括传主形象,深入分析传主的人格魅力和品质特征
高考专项复习 之 ——病句辨析与修改.
第1节 光的干涉 (第2课时).
第11讲 模板工程 邵阳学院 杨宗耀(教授级高工) 1 模板的种类 2 现浇结构中常用的模板 3 模板设计 4 模板的拆除
群組未知 水蜜桃每4個裝一盒,爸爸買了5盒,一共買了幾個水蜜桃? 爸爸想把20個水蜜桃平分給他的5個朋友,每個朋友可以得到幾個水蜜桃?
勾股定理 说课人:钱丹.
第4章 种群和群落 第3节 群落的结构 自主学习案   合作探究案 课后练习案. 第4章 种群和群落 第3节 群落的结构 自主学习案   合作探究案 课后练习案.
苏教版小学数学六年级(下册) 认识正比例的量 执教者:朱勤.
证券投资基金 投资121 06号余煜欢 09号陈秋婷 33号陈柔韵 08号潘晓峰 10号曾杰 34号谭锐权.
狂賀!妝品系同學美容乙級通過 妝品系三甲 學號 姓名 AB 陳柔諺 AB 陳思妤 AB 張蔡婷安
成才之路 · 语文 人教版 · 必修2 路漫漫其修远兮 吾将上下而求索.
天下雜誌288期特別企劃 成功領導人的10大特質.
第5章 弯曲变形 主讲教师:鞠彦忠 2018年11月21日星期三.
第 四 章 静定刚架.
静定结构影响线 ——影响线应用 主讲教师:戴萍.
北师大版四年级数学上册 平移与平行.
第 九 章 虚功原理与结构位移计算.
参赛题目: C题-3D机房仿真建模 参赛学校:沈阳建筑大学 参赛队员:胡海浪、倪佳玉、谢海伦 指导教师:邹惠芬
人教版数学四年级(下) 乘法分配律 单击页面即可演示.
第 十 二 章 渐 进 法、近似法 及超静定结构的影响线.
04 第四章 應用幾何 4-1 概說 4-2 認識尺度符號 4-3 等分線段、圓弧與角 4-4 垂直線與平行線 4-5 多邊形
第三章 静定结构受力分析.
4 弯曲内力、应力 4-1 对称弯曲的概念及梁的计算简图 4-2 梁的剪力和弯矩 剪力图和弯矩图 4-3 平面刚架和曲杆的内力图
第四章 平面一般力系 前 言 §4-1 力线平移定理 §4-2 平面一般力系向一点简化 §4-3 分布荷载 §4-4 平面一般力系的平衡条件
第二部分 免疫系统与免疫活性分子 免疫系统 免疫球蛋白 细胞因子 补体系统 第二章 第三章 第二 部分 第五章 第四章
第六章 力矩分配法.
Welcome 实验:筷子提米.
不等式的基本性质 本节内容 本课内容 4.2.
苏教版五年级数学上册 用含有字母的式子表示 简单的数量关系 周冬妮 1.
5 位 移 法.
线段 射线 直线.
第四章 基本平面图形 线段、射线、直线.
组织行为学 主讲教师 蔡丹岩.
分配律 ~ 觀念 15 × 15 × + 15 × 乘法公式 蘇德宙 老師 台灣數位學習科技股份有限公司
第九章 位 移 法.
材料力学(乙) 题目解析 赵 沛 浙江大学交叉力学中心 浙江大学工程力学系 2019年6月18日.
國立政治大學 96學年度學雜費調整 第二次公聽會
Presentation transcript:

结构力学 建筑工程系 付向红

第 1 章 绪 论 §1-1 结构力学的学科内容和教学要求 建筑物和工程设施中承受、 1、结构 传递荷载作用的部分称为工程 第 1 章 绪 论 §1-1 结构力学的学科内容和教学要求 1、结构 建筑物和工程设施中承受、 传递荷载作用的部分称为工程 结构,简称为结构。 房屋中的梁柱体系桥梁、 水坝等等都是工程结构 的例子。

第 8 章 渐进法及其他算法简述 §8-1 力矩分配法的基本概念 1、线性代数方程组的解法: 2、结构力学的渐近法 第 8 章 渐进法及其他算法简述 §8-1 力矩分配法的基本概念 1、线性代数方程组的解法: 直接法 渐近法 力学建立方程,数学渐近解 2、结构力学的渐近法 不建立方程式,直接逼近真实受力状态。其突出的优点是每一步都有明确的物理意义。 3、位移法方程的两个特点: kij (1)每个方程最多是五项式; kik kii kir (2)主系数大于副系数的总和,即 kii > kij, 适于渐近解法。 kis 4、不建立方程组的渐近解法有: (1)力矩分配法:适于连续梁与无侧移刚架。 (2)无剪力分配法:适于规则的有侧移刚架。 (3)迭代法:适于梁的刚度大于柱刚度的各种刚架。 它们都属于位移法的渐近解法。

SAB与杆的i(材料的性质、横截面的形状和尺寸、杆长)及远端支承有关, 理论基础:位移法; 计算对象:杆端弯矩; 计算方法:逐渐逼近的方法; 适用范围:连续梁和无侧移刚架。 力矩分配法 一、转动刚度S: 表示杆端对转动的抵抗能力。 在数值上 = 仅使杆端发生单位转动时需在杆端施加的力矩。 SAB=4i SAB=3i 1 1 SAB=i SAB=0 1 SAB与杆的i(材料的性质、横截面的形状和尺寸、杆长)及远端支承有关, 而与近端支承无关。

二、分配系数 设A点有力矩M,求MAB、MAC和MAD SAB = 4i 1 SAB= 3i SAB= i M 如用位移法求解: C A B D iAB iAC iAD 于是可得 M MAD MAB MAC 分配系数

三、传递系数 MAB = 4 iAB A MBA = 2 iAB A MAB = 3iABA A MAB= iABA l A B 近端 远端 MAB = 3iABA A B A MAB= iABA MBA = - iAB A A A B 在结点上的外力矩按各杆分配系数分配给各杆近端截面,各杆远端弯矩分别等于各杆近端弯矩乘以传递系数。

= + 单结点的力矩分配 ——基本运算 A B C 固端弯矩带本身符号 MAB MBA MBC MB MBC MB MBA A B C MABP MBAP MBCP + -MB -MB A B C 最后杆端弯矩: MBA = MBAP+ MBC = MBCP+ MAB= MABP+ 然后各跨分别叠加简支梁的弯矩图,即得最后弯矩图。

= + 例1. 用力矩分配法作图示连续梁 的弯矩图。 (1)B点加约束 167.2 M图(kN·m) 115.7 200kN 20kN/m MAB= 90 300 A B C MBA= 3m 6m EI MBC= A B C 200kN 20kN/m 60 MB= MBA+ MBC= (2)放松结点B,即加-60进行分配 设i =EI/l 计算转动刚度: -150 150 -90 + SBA=4i SBC=3i -60 0.571 0.429 A B C 分配系数: -17.2 -34.3 -25.7 = 0.571 0.429 分配力矩: A B C -150 150 -90 -17.2 -34.3 -25.7 -167.2 115.7 -115.7 (3) 最后结果。合并前面两个过程

§8-2 多结点的力矩分配 ——渐近运算 C A B C D B MAB MBA MBC MCB MCD MB MC mBA mBC §8-2 多结点的力矩分配 ——渐近运算 C A B C D B MAB MBA MBC MCB MCD MB MC mBA mBC mCB -MB MC’ 放松,平衡了 固定 -MC’ 固定 放松,平衡了 放松,平衡了 固定

B C  m 例1.用力矩分配法列表计算图示连续梁。 20kN/m 100kN A B C D 6m 4m EI=1 EI=2 0.4 0.6 0.667 0.333 B m -60 60 -100 100 -33.4 -66.7 -33.3 分配与传递 14.7 29.4 44 22 -7.3 -14.7 -7.3 1.5 2.9 4.4 2.2 -0.7 -1.5 -0.7 0.2 0.3 0.4 C Mij -43.6 92.6 -92.6 41.3 -41.3 92.6 43.6 41.3 A B C D 21.9 M图(kN·m) 133.1

A B C D 6m 4m EI=1 EI=2 20kN/m 100kN 43.6 133.1 41.3 21.9 M图(kN·m) 92.6 51.8 56.4 6.9 Q图(kN) A B C D 68.2 43.6 B 求支座反力 68.2 56.4 124.6

上题若列位移法方程式,用逐次渐近解法: B C 将上式改写成 余数 B=48.84 C=-82.89 48.88 -82.06 第一次 近似值 (1) 24 -66.67 20 -8 将上式改写成 2.4 -6.67 2 -0.8 (2) 0.24 -0.67 余数 0.2 -0.08 (3) B=48.84 C=-82.89 结 果 精确值 48.88 -82.06 MBC= 4iBCB+2 iBCC-100 =

力矩分配法小结: 结点不平衡力矩 1)单结点力矩分配法得到精确解;多结点力矩分配法得到渐近解。 2)首先从结点不平衡力矩绝对值较大的结点开始。 3)结点不平衡力矩要变号分配。 4)结点不平衡力矩的计算: 固端弯矩之和 (第一轮第一结点) 固端弯矩之和 加传递弯矩 (第一轮第二、三……结点) 结点不平衡力矩 传递弯矩 (其它轮次各结点) 总等于附加刚臂上的约束力矩 5)不能同时放松相邻结点(因定不出其转动刚度和传递系数),但可 以同时放松所有不相邻的结点,以加快收敛速度。

B C 例2. B C A D F E 4m 5m 2m q=20kN/m A B C D F E 1 1 1 mBA= 40kN·m mBC= - 41.7kN·m mCB= 41.7kN·m A B C D F E 0.3 0.4 0.445 0.333 0.3 0.222 40 -41.7 -41.7 -9.3 -18.5 -9.3 -13.9 43.5 46.9 24.5 14.7 3.45 1.7 9.8 4.89 3.3 3.3 4.4 2.2 -0.5 -1.0 -0.5 -0.7 24.4 -9.8 -14.6 0.15 0.15 0.2 43.45 3.45 -46.9 -4.65 -0.25 1.65 -4.90 M图 0.07 1.72

例3. 带悬臂杆件的结构的力矩分配法。 M M/2 A B C 1m 5m EI=常数 D 50kN A B C 1m 5m EI=常数 D 50kN·m 5/6 1/6 25 50 -20.8 -4.2 -20.8 +20.8 +50 M A B M/2

m 用力矩分配法计算,作M图。 5m 1m 4m 取EI=5 4EI 2EI i=4 i=2.5 MB=31.25-20.83=10.42 ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓ 2kN/m 20kN 5m 1m 4m 20kN 20 A 取EI=5 4EI 2EI B i=4 i=2.5 C MB=31.25-20.83=10.42 MC=20.83-20-2.2=-1.37 E F 结点 杆端 A E B C F AB EB BE BA BC CB CF FC m μ (-20) 0.263 0.316 0.421 0.615 0.385 31.25 -20.83 20.83 -1.37 -2.74 -3.29 -4.39 -2.20 0.42 0.84 0.53 0.27 -0.05 -0.10 -0.14 -0.18 -0.09

m 结点 杆端 A E B C F AB EB BE BA BC CB CF FC μ 0.263 0.316 0.421 0.615 0.385 31.25 -20.83 20.83 (-20) -2.74 -3.29 -4.39 -1.37 -2.20 0.84 0.53 0.27 0.42 -0.10 -0.14 -0.18 -0.05 -0.09 0.03 0.06 0.03 0.02 -0.01 -0.01 -0.01 M -1.42 -2.85 27.80 -24.96 19.94 0.56 0.29 计算之前,去掉静定伸臂,将其上荷载向结点作等效平移。 有结点集中力偶时,结点不平衡力矩=固端弯矩之和-结点集中 力偶(顺时针为正)

m 3m 2i i 1.5m i SAG=4i SAC=4i SCA=4i 4i SCH=2i SCE=4i μAG=0.5 μAC=0.5 ↓↓↓↓↓↓↓↓↓↓ 20kN/m 3m 2i i ↓↓↓↓↓↓ 20kN/m 1.5m i A C E G H SAG=4i SAC=4i SCA=4i 4i SCH=2i SCE=4i μAG=0.5 μAC=0.5 2i μCA=0.4 μCH=0.2 μCE=0.4 结点 杆端 A C E AG AC CA CH CE m μ 0.5 0.5 0.4 0.2 0.4 -15

m 7.11 7.11 2.63 结点 杆端 A C E AG AC CA CH CE μ 0.5 0.4 0.2 -15 2.63 ↓↓↓↓↓↓↓↓↓↓ 20kN/m 7.11 2.63 结点 杆端 A C E AG AC CA CH CE m μ 0.5 0.4 0.2 -15 2.63 0.78 7.5 7.5 3.75 1.58 0.79 1.58 - 0.75 -1.50 -0.75 -1.50 - 0.75 0.37 0.38 0.19 M图(kN.m) 0.79 - 0.04 -0.08 -0.03 -0.08 - 0.04 0.02 0.02 M -7.11 7.11 2.36 -0.78 -1.58 -0.79

2 i S = 2 i S = i + = m i + = m 12 ) 2 ( 3 ql l q m = 例、 求矩形衬砌在上部土压力作用下的弯矩图。 l1 l2 ↓↓↓↓↓↓↓↓↓↓↓↓↓↓ q A B D C I1 E I2 ↓↓↓↓↓↓↓↓↓↓↓↓↓↓ q 解:取等代结构如图。 设梁柱的线刚度为i1,i2 ↓↓↓↓↓↓↓ q E B F 2i1 2 1 i S BE = 2 i S BF = 2i2 2 1 i BF + = m 2 1 i BE + = m BE BF μ 12 ) 2 ( 3 1 ql l q m BE = i 2 1 + 2 1 i +

μ BE BF 2 1 i + m i2 i1 M图 M 当竖柱比横梁的刚度大很多时(如i2>20i1),梁端弯矩接近于固端弯矩ql2/12。此时竖柱对横梁起固定支座的作用。 A B D C E F 当横梁比竖柱的刚度大很多时(如i1>20i2),梁端弯矩接近于零。此时竖柱对横梁起铰支座的作用。 由此可见:结构中相邻部分互为弹性支承,支承的作用不仅决定于构造作法,也与相对刚度有关。 如本例中只要横梁线刚度i1 超过竖柱线刚度i2的20倍时,横梁即可按简支梁计算;反之只要竖柱i2 超过横梁线刚度i1的20倍时,横梁即可按两端固定梁计算。