第3章 矩阵、数组和符号运算 一、矩阵和数组运算 要求内容: ( 1)熟练掌握矩阵的创建。 ( 2)掌握矩阵运算和数组运算。

Slides:



Advertisements
Similar presentations
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
Advertisements

—— matlab 具有出色的数值计算能力,占据世界上数值计算软件的主导地位
第二讲 Matlab的数值计算 —— Matlab 具有出色的数值计算能力,占据世界上数值计算软件的主导地位。
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
§1 二阶与三阶行列式 ★二元线性方程组与二阶行列式 ★三阶行列式
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
22.3 实际问题与一元二次方程(1).
数学软件 Matlab —— Matlab 快速入门.
10.2 立方根.
分式的乘除.
第十六章 分 式 分式的乘除(1
第五章 矩阵与行列式 §5.4 逆矩阵 §5.5 矩阵的初等变换.
§1 线性空间的定义与性质 ★线性空间的定义 ★线性空间的性质 ★线性空间的子空间 线性空间是线性代数的高等部分,是代数学
数学软件 Matlab —— Matlab 基础.
第一次世界大战的时候,一位法国飞行员在2 000 m高空飞行的时候,发现脸旁有一个小玩意儿在游动着,飞行员以为这是一只小昆虫,敏捷地把它一把抓了过来,令他吃惊的是,他发现他抓到的竟是一颗德国子弹!     问题:大家都知道,子弹的飞行速度是相当快的,这名法国飞行员为什么会有这么大的本领呢?为什么飞行员能抓到子弹?
MATLAB语言 一些命令: 1. “show workspace” 命令
2-7、函数的微分 教学要求 教学要点.
第三讲 矩阵特征值计算及其应用 — 正交变换与QR方法.
第 11 章 矩 阵 上一章讨论的线性方程组,未知数的个 数与方程的个数相等,且系数行列式不等于 零。但是再实际应用中,还会出现未知数的
第3章 矩阵、数组和符号运算 一、矩阵和数组运算 要求内容: ( 1)熟练掌握矩阵的创建。 ( 2)掌握矩阵运算和数组运算。
第四章 线性代数问题求解 矩阵 线性方程组的直接解法 线性方程组的迭代法 线性方程组的符号解法 稀疏矩阵技术 特征值与特征向量.
第二章 矩阵(matrix) 第8次课.
线性代数机算与应用 李仁先 2018/11/24.
第2章 MATLAB矩阵及其运算 2. 1 变量和数据操作 2. 2 MATLAB矩阵 2. 3 MATLAB运算 2. 4 矩阵分析 2
MATLAB数学实验 第一章 MATLAB入门.
MATLAB数学实验 第三章 矩阵代数.
元素替换法 ——行列式按行(列)展开(推论)
!!! 请记住:矩阵是否等价只须看矩阵的秩是否相同。
数学软件 Matlab —— 矩阵运算.
第2章 MATLAB基本运算.
第二章 矩阵及其运算 §1 线性方程组和矩阵 §2 矩阵的运算 §3 逆矩阵 §4 克拉默法则 §5 矩阵分块法.
28.1 锐角三角函数(2) ——余弦、正切.
数学软件 Matlab —— 矩阵运算.
第2章 MATLAB矩阵及其运算 变量和数据操作 MATLAB矩阵 MATLAB运算 矩阵分析 字符串 结构数据和单元数据
工业机器人技术基础及应用 主讲人:顾老师
第一章 函数与极限.
第5章 线性代数 矩阵分析 矩阵分解 线性方程组的求解 符号矩阵.
用数学软件解决高等代数问题 主讲 张力宏、张洪刚
第8讲 逆矩阵 主要内容: 1. 逆矩阵的定义及性质 2. 求逆矩阵的伴随矩阵法 3.求逆矩阵的初等行变换法.
线性代数 第二章 矩阵 §1 矩阵的定义 定义:m×n个数排成的数表 3) 零矩阵: 4) n阶方阵:An=[aij]n×n
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
第五讲 线性代数中的数值计算问题.
实验教学 MATLAB在行列式和矩阵中的应用 授课教师:杨梦云.
复习.
第五章 线性代数运算命令与例题 北京交通大学.
成绩是怎么算出来的? 16级第一学期半期考试成绩 班级 姓名 语文 数学 英语 政治 历史 地理 物理 化学 生物 总分 1 张三1 115
第4章 Excel电子表格制作软件 4.4 函数(一).
第九节 赋值运算符和赋值表达式.
第16讲 相似矩阵与方阵的对角化 主要内容: 1.相似矩阵 2. 方阵的对角化.
§8.3 不变因子 一、行列式因子 二、不变因子.
线性代数 第十一讲 分块矩阵.
数学建模与数学实验 MATLAB入门.
2.2矩阵的代数运算.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
线 性 代 数 厦门大学线性代数教学组 2019年5月12日4时19分 / 45.
A经有限次初等变换化为B,称A与B等价,记作A→B.
2019/5/21 实验一 离散傅立叶变换的性质及应用 实验报告上传到“作业提交”。 11:21:44.
§2 方阵的特征值与特征向量.
2.3.运用公式法 1 —平方差公式.
在发明中学习 线性代数概念引入 之四: 矩阵运算 李尚志 中国科学技术大学.
异分母分数加、减法.
定义5 把矩阵 A 的行换成同序数的列得到的矩阵,
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
教学大纲(甲型,54学时 ) 教学大纲(乙型, 36学时 )
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
数学模型实验课(二) 最小二乘法与直线拟合.
§4.5 最大公因式的矩阵求法( Ⅱ ).
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
9.3多项式乘多项式.
Presentation transcript:

第3章 矩阵、数组和符号运算 一、矩阵和数组运算 要求内容: ( 1)熟练掌握矩阵的创建。 ( 2)掌握矩阵运算和数组运算。 第3章 矩阵、数组和符号运算 一、矩阵和数组运算  要求内容: ( 1)熟练掌握矩阵的创建。 ( 2)掌握矩阵运算和数组运算。 ( 3)学会如何使用矩阵运算函数和数组运算函数。 ( 4)注意区分矩阵和数组的差别,特别是运算符的差别。 ( 6)了解多项式的创建方法和基本运算。

第3章 矩阵、数组和符号运算 MATLAB 以矩阵为基本的运算单元,向量和标量作为特殊的矩阵处理:向量看作只有一行或一列的矩阵;标量看作只有一个元素的矩阵。 1、 矩阵的构造 a.直接输入 b.利用内部函数产生矩阵 c.利用M文件产生矩阵 d.从外部数据文件调入矩阵

第3章 矩阵、数组和符号运算 a. 直接输入 直接输入需遵循以下基本规则: 第3章 矩阵、数组和符号运算 a.  直接输入 直接输入需遵循以下基本规则: 整个矩阵应以“ [ ]”为首尾,即整个输入矩阵必须包含在方括号中; 矩阵中,行与行之间必须用分号“ ;”或 Enter 键( 按 Enter 键)符分隔; 每行中的元素用逗号“ ,”或空格分隔; 矩阵中的元素可以是数字或表达式,但表达式中不可包含未知的变量,MATLAB用表达式的值为该位置的矩阵元素赋值。当矩阵中没有任何元素时,该矩阵被称作“ 空阵”( Empty Matrix)。

第3章 矩阵、数组和符号运算 >> A=[1,2,3,4;5,6,7,8;9,10,11,12;13,14,15,16]  A =   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 利用表达式输入 >> B=[1,sqrt(25),9,13 2,6,10,7*2 3+sin(pi),7,11,15 4,abs(-8),12,16] B = 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

第3章 矩阵、数组和符号运算 由向量构成矩阵 向量是组成矩阵的基本元素之一。向量元素需要用方括号括起来。元素之间用空格和逗号分隔生成行向量,用分号隔开生成列向量。可以把行向量看成1n 阶矩阵,把列向量看成n1 阶矩阵。 向量的构造方法: 直接输入向量 利用冒号生成向量 利用 linspace/logspace 生成向量 >> a=[1,2,3,4]; >> x=0:0.5:2; % x=logspace(a,b,n) 生成有 n 个元素的行向量 x,其元素起点 x(1)=10a,终点 x(n)=10b。 >> b=logspace(0,2,4) b = 1.0000 4.6416 21.5443 100.0000

第3章 矩阵、数组和符号运算 % x=linspace(a,b,n) 生成有 n 个元素的行向量 x,其元素值在 a、b 之间线性分布。 第3章 矩阵、数组和符号运算 >> x x = 0 0.5000 1.0000 1.5000 2.0000 % x=linspace(a,b,n) 生成有 n 个元素的行向量 x,其元素值在 a、b 之间线性分布。 >> y=linspace(0,2,7) y =   0 0.3333 0.6667 1.0000 1.3333 1.6667 2.0000 >> z=[-1 x 3] z = -1.0000 0 0.5000 1.0000 1.5000 2.0000 3.0000 >> u=[y;z] u = 0 0.3333 0.6667 1.0000 1.3333 1.6667 2.0000

第3章 矩阵、数组和符号运算 b.利用内部函数产生矩阵 % ones 生成全部元素为 1 的矩阵 %compan生成x向量的伴随矩阵 第3章 矩阵、数组和符号运算 b.利用内部函数产生矩阵 %compan生成x向量的伴随矩阵 >> x=[2,4,6,8,10] x =   2 4 6 8 10 >> compan(x) ans = -2 -3 -4 -5 -6 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 % eye 生成单位阵 >> S=eye(6) S =   1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 % ones 生成全部元素为 1 的矩阵 >> ones(3,4) ans = 1 1 1 1 >> F=5*ones(3) F = 5 5 5 % zeros 生成全部元素为0的矩阵 >> Z=zeros(2,4) Z = 0 0 0 0 % rand 生成均匀分布的随机矩阵 >> R=rand(4)   R =   0.9501 0.8913 0.8214 0.9218 0.2311 0.7621 0.4447 0.7382 0.6068 0.4565 0.6154 0.1763 0.4860 0.0185 0.7919 0.4057 %生成空阵 >> K=[]  K =   []

第3章 矩阵、数组和符号运算 c.利用M文件产生矩阵 A=[1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 第3章 矩阵、数组和符号运算 c.利用M文件产生矩阵 A=[1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 16,17,18,19,20 21,22,23,24,25]

第3章 矩阵、数组和符号运算 d.从外部数据文件调入矩阵 用load命令输入 用Import 菜单输入

第3章 矩阵、数组和符号运算 2、矩阵元素的修改 第3章 矩阵、数组和符号运算 2、矩阵元素的修改 >> A=[1,2,3,4;5,6,7,8;9,10,11,12;13,14,15,16]  A =   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 >> A(1,1) ans = 1 >> A(2,3) 7 >> A(1,1)=0;A(2,2)=A(1,2)+A(2,1);A(4,4)=cos(0); >> A A = 0 2 3 4 5 7 7 8 13 14 15 1

第3章 矩阵、数组和符号运算 3、矩阵的运算 矩阵运算按照线性代数中基本的运算法则进行; 加减运算必须在具有相同行列的矩阵之间进行; 第3章 矩阵、数组和符号运算 3、矩阵的运算 矩阵运算按照线性代数中基本的运算法则进行; 加减运算必须在具有相同行列的矩阵之间进行; 只有当矩阵 A 的列数和矩阵 B 的行数相同时,才可进行矩阵 A 和 B 的乘法运算; 乘方运算只有在矩阵为方阵时才有意义; 当一个矩阵和一个标量( 1×1 的矩阵)进行运算时,其结果将是此标量和矩阵中的每一个元素“ 相加”、“ 相减”、“ 相乘”、“ 相除”; 在 MATLAB 中,矩阵左除和右除的含义不同。矩阵右除定义为:B\A=(A′/B′)。

第3章 矩阵、数组和符号运算 a. 矩阵的加减运算 第3章 矩阵、数组和符号运算 a.  矩阵的加减运算 >> A=[1,2,3,4;5,6,7,8;9,10,11,12;13,14,15,16] >> B=[1,sqrt(25),9,13 2,6,10 7*2 3+sin(pi),7,11,15 4,abs(-8),12,16] >> C=A+B  C =   2 7 12 17 7 12 17 22 12 17 22 27 17 22 27 32 >> D=A-B D = 0 -3 -6 -9 3 0 -3 -6 6 3 0 -3 9 6 3 0 >> E=A+3  E =   4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

第3章 矩阵、数组和符号运算 b. 矩阵乘法 c. 矩阵除法 右除 A/B =A*inv(B) 左除 A\B=inv(A)*B 第3章 矩阵、数组和符号运算 b.  矩阵乘法 >> C=A*B C = 30 70 110 150 70 174 278 382 110 278 446 614 150 382 614 846 >> D=A*3 D = 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 c. 矩阵除法 左除 A\B=inv(A)*B >> A=[8,1,6;3,5,7;4,9,2] A =   8 1 6 3 5 7 4 9 2 >> B=[1,1,1;1,2,3;1,3,6]  B =   1 1 1 1 2 3 1 3 6 >> A\B ans = 0.0667 0.0500 0.0972 0.0667 0.3000 0.6389 0.0667 0.0500 -0.0694 >> C=inv(A) C =   0.1472 -0.1444 0.0639 -0.0611 0.0222 0.1056 -0.0194 0.1889 -0.1028 >> C*B  ans =   0.0667 0.0500 0.0972 右除 A/B =A*inv(B) >> A/B ans = 27 -31 12 1 2 0 -13 29 -12 >> D=inv(B)  D =   3 -3 1 -3 5 -2 1 -2 1 >> A*D

第3章 矩阵、数组和符号运算 当对矩阵作除法运算时,有可能因为误差设置的差别导致不精确的结果,此时,MATLAB 会自动给出警告信息: 第3章 矩阵、数组和符号运算 当对矩阵作除法运算时,有可能因为误差设置的差别导致不精确的结果,此时,MATLAB 会自动给出警告信息: MATLAB 采用 IEEE( 国际认可的)算法,即使 A 为奇异阵( 即 A 的行列式值是0),运算也照样进行,但是此时 MATLAB 将给出警告信息:“ Warning: Matrix is singular to working precision.”,求出的矩阵所有元素为无穷大( Inf); 当矩阵 A 为病态阵( Badly Scaled)时,MATLAB 使用的算法产生的误差可能很大,MATLAB 系统也将给出警告信息:“ Warning: Matrix is badly scaled to working precision. Results may be inaccurate.”。 >> E=[1,2,3;4,5,6;7,8,9] E = 1 2 3 4 5 6 7 8 9 >> F=[1,4,7;2,5,8;3,6,9] F = 1 4 7 2 5 8 3 6 9 >> E\F Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 1.541976e-018. ans = -0.3333 -7.3333 -14.3333 0.6667 11.6667 22.6667 0 -4.0000 -8.0000

第3章 矩阵、数组和符号运算 4、矩阵的函数 a.矩阵的基本变换函数 第3章 矩阵、数组和符号运算 4、矩阵的函数 a.矩阵的基本变换函数 >> A=[3,3,5;2,4,6;7,8,9] %创建方阵 A A =   3 3 5 2 4 6 7 8 9 >> inv(A) %矩阵的逆(A必须为非奇异方阵)  ans = 0.5000 -0.5417 0.0833 -1.0000 0.3333 0.3333 0.5000 0.1250 -0.2500 >> A‘ %矩阵的转置 3 2 7 3 4 8 5 6 9

第3章 矩阵、数组和符号运算 b.常用的矩阵运算函数 只有方阵才可计算行列式值,即 det(A)的计算只有在 A 为方阵时才有意义。 第3章 矩阵、数组和符号运算 b.常用的矩阵运算函数 只有方阵才可计算行列式值,即 det(A)的计算只有在 A 为方阵时才有意义。 logm(A)和 sqrtm(A)计算矩阵的对数/平方根是指对整个矩阵 A 求对数/平方根。

第3章 矩阵、数组和符号运算 >> det(A) %求方阵 A 的行列式值 ans = -24 第3章 矩阵、数组和符号运算 >> det(A) %求方阵 A 的行列式值 ans = -24 >> eig(A) %求特征值 16.7503 0.8793 -1.6295 >> logm(A) %求矩阵 A 的对数 0.5432 + 0.8066i 0.7475 + 0.5526i 0.6902 - 0.6914i 0.8584 + 1.4131i 0.7845 + 0.9681i 0.6967 - 1.2112i 0.7502 - 1.5947i 1.1089 - 1.0926i 1.8504 + 1.3668i >> sqrtm(A) %求矩阵 A 的平方根 1.2466 + 0.3278i 0.5192 + 0.2246i 1.0906 - 0.2809i 0.2001 + 0.5742i 1.4228 + 0.3934i 1.3620 - 0.4921i 1.6144 - 0.6480i 1.7430 - 0.4439i 2.3610 + 0.5554i

第3章 矩阵、数组和符号运算 c.矩阵的分解函数

第3章 矩阵、数组和符号运算 >> X=[3,-1,2;1,2,-1;-2,1,4] %输入矩阵 X X = 3 -1 2 第3章 矩阵、数组和符号运算 >> X=[3,-1,2;1,2,-1;-2,1,4] %输入矩阵 X  X =   3 -1 2 1 2 -1 -2 1 4 >> [L,U]=lu(X) %对矩阵 X 进行 LU 分解  L =   1.0000 0 0 0.3333 1.0000 0 -0.6667 0.1429 1.0000 U =   3.0000 -1.0000 2.0000 0 2.3333 -1.6667 0 0 5.5714    >> [Q,R]=qr(X) %对矩阵 X 进行 QR 分解  Q =   -0.8018 0.1543 0.5774 -0.2673 -0.9567 -0.1155 0.5345 -0.2469 0.8083  R =   -3.7417 0.8018 0.8018 0 -2.3146 0.2777 0 0 4.5033

第3章 矩阵、数组和符号运算 5、数组运算 Matlab是以矩阵为基本运算单元的,数组作为独立的计算单元实体是不存在的。数组运算是Matlab的一种运算形式,它从矩阵的单个元素出发,针对每个元素进行的运算。 MATLAB对数组运算在符号上做了不同的约定,运算符形式为:.* , ./ , .\ , .^ 矩阵运算和数组运算有着显著的不同。属于两种不同的运算:矩阵运算是从矩阵的整体出发,按照线性代数的运算规则进行,有着明确而严格的数学规则;而数组运算是从矩阵的单个元素出发,针对每个元素进行的运算。 对于加法和减法而言,矩阵运算和数组运算相同;对于乘法和除法而言,矩阵和数组的运算有着显著的不同。

第3章 矩阵、数组和符号运算 矩阵的数组乘/除及乘方 数组除的运算规则: 第3章 矩阵、数组和符号运算 矩阵的数组乘/除及乘方 数组除的运算规则: 当参与除运算的两个矩阵同维时,运算为矩阵的相应元素相除,计算结果是与参与运算的矩阵同维的矩阵; 当参与运算的矩阵有一个是标量时,运算是标量和矩阵的每一个元素相除,计算结果是与参与运算的矩阵同维的矩阵; 右除与左除的关系为 A./B=B.\A,其中 A 是被除数,B 是除数。

第3章 矩阵、数组和符号运算 > > E=[1,2,3;4,5,6;7,8,9] >> F./E ans = 第3章 矩阵、数组和符号运算 > > E=[1,2,3;4,5,6;7,8,9] E = 1 2 3 4 5 6 7 8 9 >> F=[1,4,7;2,5,8;3,6,9] F = 1 4 7 2 5 8 3 6 9 >> E.\F ans =   1.0000 2.0000 2.3333 0.5000 1.0000 1.3333 0.4286 0.7500 1.0000 >> 4.\F  ans =   0.2500 1.0000 1.7500 0.5000 1.2500 2.0000 0.7500 1.5000 2.2500 >> F./E  ans =   1.0000 2.0000 2.3333 0.5000 1.0000 1.3333 0.4286 0.7500 1.0000 >> E*F ans = 14 32 50 32 77 122 50 122 194 >> E.*F 1 8 21 8 25 48 21 48 81

第3章 矩阵、数组和符号运算 数组乘方的运算规则: 第3章 矩阵、数组和符号运算 数组乘方的运算规则: ①矩阵的标量乘方 A.^p( 即 A 为矩阵,p 为标量),运算为矩阵每个元素的 p 次方,计算结果是与矩阵A 同维的矩阵; ②标量的矩阵乘方 p.^A,表示以 p 为底,分别以 A 的元素为指数求幂值,计算结果是与矩阵A 同维的矩阵。

第3章 矩阵、数组和符号运算 b.向量的数组运算: 加/减法: 乘方: 乘/除法: 点积、叉积: >> x=[1,2,3] 第3章 矩阵、数组和符号运算 b.向量的数组运算: 加/减法: >> x=[1,2,3] >> y=[4,5,6] >> c=x-y >> a=1+x 乘/除法: >> b=2*x >> b=2.*x >> z3=x.\9 >> z4=x./9 >> z=x.*y >> z1=x./y >> z2=x.\y 乘方: >> z7=2.^x >> z5=x.^3 >> z6=x.^y 点积、叉积: >> c1=dot(a,b) >> c1= sum(a.*b) >> c2=cross(a,b)

第3章 矩阵、数组和符号运算 6、数组函数 常用的数学函数

第3章 矩阵、数组和符号运算 常用三角函数和超越函数

第3章 矩阵、数组和符号运算 >> A=[3,3,5;2,4,6;7,8,9] A = 3 3 5 2 4 6 7 8 9 第3章 矩阵、数组和符号运算 >> A=[3,3,5;2,4,6;7,8,9]  A =   3 3 5 2 4 6 7 8 9 >> log(A) ans =   1.0986 1.0986 1.6094 0.6931 1.3863 1.7918 1.9459 2.0794 2.1972 >> sqrt(A) 1.7321 1.7321 2.2361 1.4142 2.0000 2.4495 2.6458 2.8284 3.0000 >> cos(A) ans = -0.9900 -0.9900 0.2837 -0.4161 -0.6536 0.9602 0.7539 -0.1455 -0.9111 >> pow2(A) 8 8 32 4 16 64 128 256 512 >> 2.^A

第3章 矩阵、数组和符号运算 7、多项式及其运算 a.多项式的输入 向量A=[a0,a1,…,an-1,an], 第3章 矩阵、数组和符号运算 7、多项式及其运算 a.多项式的输入 向量A=[a0,a1,…,an-1,an], 则命令poly(A)会生成(x-a0)(x-a1)…(x-an-1)(x-an) 的多项式 >> a a =  1 2 3 4 >> PA=poly(a) PA = 1 -10 35 -50 24 >> poly2sym(PA,'x') ans = x^4-10*x^3+35*x^2-50*x+24 >> p_a=poly2sym(a) p_a = x^3+2*x^2+3*x+4

第3章 矩阵、数组和符号运算 b.多项式的运算 除法: 微分: 加法: 求根: 乘法: >> a a = 第3章 矩阵、数组和符号运算 b.多项式的运算 >> a a = 1 2 3 4 >> b=[0,1] b = 0 1 加法: >> c=a+[0 0 b] c =   1 2 3 5 乘法: >> d=conv(a,b) d = 0 1 2 3 4 除法: >> [div,rest]=deconv(d,a) div = 0 1 rest = 0 0 0 0 0 微分: >> polyder(a) ans = 3 4 3 求根: >> roots(a)   -1.6506 -0.1747 + 1.5469i -0.1747 - 1.5469i

第3章 矩阵、数组和符号运算 求值: 多项式拟合: >> a=[1,2,3,4] a = 1 2 3 4 第3章 矩阵、数组和符号运算 求值: >> a=[1,2,3,4] a = 1 2 3 4 >> b=[1,1;1,1] b = 1 1 >> polyvalm(a,4) % x=4时多项式的值  ans =   112 %与polyval(a,4)结果相同 >> polyval(a,b) %数组运算 ans = 10 10 >> polyvalm(a,b) %矩阵运算 15 11 11 15 多项式拟合: >> x=0:pi/20:pi/2; >> y=sin(x); >> [p,s]=polyfit(x,y,5); >> x1=0:pi/30:pi*2; >> y1=sin(x1); >>y2=p(1)*x1.^5+p(2)*x1.^4+p(3)*x1.^3+p(4)*x1.^2+p(5)*x1+p(6); >> plot(x1,y1,'b-',x1,y2,'r*') >> legend('Original curve','Fitted curve') >> axis([0,7,-1.2,4])

上机习题(4) ( 1)在 MATLAB 6.0 的工作空间中用直接输入法建立如下两个矩阵,然后在矩阵编辑器中将矩阵A改为3行3列的矩阵,并将其保存。 ,  ( 2)分别对(1)产生的两个矩阵 作加、减、乘和除(左除,右除)运算,同时运用数组运算法则进行运算,比较二者的计算结果有何异同。 ( 3)利用矩阵生成函数建立一个对角线元素全部为 1 的 4 阶单位矩阵。 ( 4)利用矩阵生成函数建立一个 4×4 的随机矩阵。

上机练习(4) ( 5)对题(4)所产生的矩阵求特征值和特征向量,并用 lu和 qr命令对该矩阵进行分解。 ( 6)对题( 1)中的矩阵 B 求秩、行列式的值、条件数、平方根及对数。 ( 7)将如下矩阵 A 进行转置和求逆。 ( 8)在 MATLAB 环境下,用下面三条指令创建矩阵 C,看输出怎样的结果。 a=2.7358; b=33/79; C=[1,2*a+i*b,b*sqrt(a);sin(pi/4),a+5*b,3.5+i]