定理 6.10(五色定理):任何平面图G是5-可着色的。

Slides:



Advertisements
Similar presentations
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
Advertisements

第十五章 欧拉图与哈密顿图 主要内容 欧拉图 哈密顿图 带权图与货郎担问题.
7-4欧拉图和汉密尔顿图 要求: 1、理解欧拉图、汉密尔顿图的定义。 2、掌握欧拉图的判定方法。 3、会判断一些图不是汉密尔顿图。
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
树的基本概念 离散数学─树 南京大学计算机科学与技术系.
七 年 级 数 学 第二学期 (苏 科 版) 复习 三角形.
八年级下数学课题学习 格点多边形的面积计算 数格点 算面积.
探索三角形相似的条件(2).
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
树 无向树及其应用 生成树 根树及其应用.
Copyright © 《离散数学》精品课程小组
大学本科生课程 离 散 数 学 第16章 树 软件与理论教研室.
非线性反馈移位寄存器探讨 戚文峰.
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
图(一).
强连通分量 无向图 1、任意两顶点连通称该图为连通图 2、否则将其中的极大连通子图称为连通分量 A D C B E 有向图
!!! 请记住:矩阵是否等价只须看矩阵的秩是否相同。
^3^ ΔTSP 张子谦.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
本节内容 平行线的性质 4.3.
28.1 锐角三角函数(2) ——余弦、正切.
使用矩阵表示 最小生成树算法.
平行四边形的性质 灵寿县第二初级中学 栗 彦.
无向树和根树.
第 五 章 图 论 (第二部分) 1. 通路 2. 图的连通性.
6.4不等式的解法举例(1) 2019年4月17日星期三.
线段的有关计算.
2.3等腰三角形的性质定理 1.
2.6 直角三角形(二).
离散数学─图论初步 南京大学计算机科学与技术系
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
⑴当∠MBN绕点B旋转到AE=CF时(如图1),比较AE+CF与EF的大小关系,并证明你的结论。
3.3 垂径定理 第2课时 垂径定理的逆定理.
第14讲 图的有关概念, 节点的度数 主要内容: 1.图的有关概念. 2.节点的度数. 3.子图与图的同构.
复习.
第十章 双线性型 Bilinear Form 厦门大学数学科学学院 网址: gdjpkc.xmu.edu.cn
第十六章 树 主要内容 无向树及其性质 生成树 根树及其应用.
哥尼斯堡(Konigsberg) 七桥问题
定理21.9(可满足性定理)设A是P(Y)的协调子集,则存在P(Y)的解释域U和项解释,使得赋值函数v(A){1}。
§8.3 不变因子 一、行列式因子 二、不变因子.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
1.5电路的线图 回顾: + U1 - I1 - U4 + - U2 + I2 n · I4 I3 + U3 -
知识点回顾 图的深度优先和广度优先遍历思想 图的深度优先遍历算法(用邻接表作为存储结构) 图的广度优先遍历算法(用邻接矩阵作为存储结构)
1.2 子集、补集、全集习题课.
13.3 等腰三角形 (第3课时).
1.设A和B是集合,证明:A=B当且仅当A∩B=A∪B
树和图 tree and graph 蔡亚星.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
2.2直接证明(一) 分析法 综合法.
平行四边形的性质 鄢陵县彭店一中 赵二歌.
高中数学必修 平面向量的基本定理.
§2 方阵的特征值与特征向量.
定义21.17:设P1=P(Y1)和P2=P(Y2),其个体变元与个体常元分别为X1,C1和 X2,C2,并且或者C1=或者C2。一个半同态映射(,):(P1,X1∪C1)→(P2,X2∪C2)是一对映射: P1→P2; : X1∪C1→X2∪C2,它们联合实现了映射p(x,c)→(p)((x),
第七章 树 7.1树及其性质 定义 7.1:一个连通无回路的图称为树,记为T。树中度数为1的顶点称为树叶(或称悬挂点)。度数大于1的顶点称为分枝点或内点。不相交的树的全体称为森林。平凡图也可称为平凡树。(平凡图即只有一个点)
24.4弧长和扇形面积 圆锥的侧面积和全面积.
§4 理想与商环 一、理想 定义14.13:[R;+,*]为环, 若I ,IR,关于+,*运算满足条件:
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
欧拉图与汉密尔顿图.
陪集 例:三次对称群S3={e,1, 2, 3, 4, 5}的所有非平凡子群是:
高中数学 选修2-2  2. 2.1 直接证明.
树的基本概念.
第三部分 图论 本部分主要内容 图的基本概念 树 欧拉图与哈密顿图 二部图与匹配 平面图 着色.
第四部分 图论 主要内容 图的基本概念:图、通路和回路、图的连通性、图的矩阵表示 图的可行遍性:欧拉图、哈密顿图、带权图及其应用
离散数学─归纳与递归 南京大学计算机科学与技术系
最小生成树 最优二叉树.
5.1 相交线 (5.1.2 垂线).
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
第十二章 树 主要内容 无向树及其性质 生成树 根树及其应用.
二、平面图的特征 找出一个图是平面图的充分必要条件的研究曾经持续了几十年, 直到 1930 年库拉托斯基 (Kuratowski) 给出了平面图的一个非常简洁的特征。
Presentation transcript:

定理 6.10(五色定理):任何平面图G是5-可着色的。 证明:不妨设G是平面简单图。下面对G的顶点数采用归纳法证明。 当n5时结论显然成立 假设对n-1个顶点的所有平面简单图G是5-可着色的。 考虑n个顶点的平面简单图G, 由定理 6.2知, G中存在顶点v0,使d(v0)5。 删去v0及其关联边得到G'=G-v0 由归纳假设, G- v0是5-可着色的, 在给定G- v0的一种着色后, 将v0及其关联边加回到原图中, 得到G.

(1)d(v0)<5, (2)d(v0)=5 定理 6.11(二色定理):地图G是2-面可着色的当且仅当它是一个欧拉图。 证明:(1) G是2-面可着色的,则它是一个欧拉图 (2) G是欧拉图,则G是2-面可着色的

第七章 树 7.1树及其性质 定义 7.1:一个连通无回路的图称为树,记为T。树中度数为1的顶点称为树叶(或称悬挂点)。度数大于1的顶点称为分枝点或内点。不相交的树的全体称为森林。平凡图也可称为平凡树。(平凡图即只有一个点)

图 (a)是一棵树;(b)是森林,也就是无回路的图,它的每个分支是一棵树。

除了定义 7.1 给出树的定义外还有几个树的等价定义, 即下面的定理。 定理7.1:设图T有n个顶点,有下列6条T是树的等价定义: (1)T是无回路的连通图; (2)T是无回路图,且e=n-1,其中e是边数; (3)T是连通图,且e=n-1; (4)T是无回路图,且在T的任两个不相邻的顶点之间添加一边,恰得到一条回路(称T为最大无回路图); (5)T是连通图,但删去任一边后,便不连通(称T为最小连通图); (6)T的每一对不同的顶点之间有唯一的一条路。

证明:(1)→(2): T是无回路的连通图要证明T是无回路图,且e=n-1,即证明e=n-1 对顶点数n采用归纳法,n=2时,因为T是无回路的连通图,显然只能是下图所示: 故结论成立。 假设n=k时结论成立,现考察n=k+1时,由于连通无回路以及定理 5.4 (若图G中每个顶点度数至少为2,则G包含一条回路), 可以知道至少有一个顶点度数为1的点u,它的关联边为 {u,v}。

(2)→(3): T是无回路图,且e=n-1,要证明T是连通图,且e=n-1。即证明T是连通图,用反证法,

(3)→(4):在T是连通图,且e=n-1的条件下,证明T是无回路图,且在T的任两个不相邻的顶点之间添加一边,恰得到一条回路。 n=2时e=1,且连通, 只能是下图 显然T是无回路的。

假设n=k-1时结论成立,考察n=k时,由于T是连通的,所以,每个顶点度数1(e=k-1)。可以证明,至少存在一个顶点u,使 d(u)=1。Why?

2)再证明如果在连通图T的任两个不相邻顶点之间添加一边,记为{vi,vj},则该边与T中从vi到vj的一条路 (vi,vi1,…, vis,vj) 构成一条回路(vi,vi1,…, vis,vj,vi)。 若这条回路不唯一,由于T无回路,而T∪{vi,vj}得到了回路,因此另一条回路C'也含有边{vi,vj},

(4)→(5): 在T是无回路图,且在T的任两个不相邻的顶点之间添加一边,恰得到一条回路的条件下证明T是连通图,但删去任一边后,便不连通。 若T不连通, 则存在顶点vi和vj,在vi与vj之间没有路。显然,若加一边{vi,vj},不会产生回路,与假设矛盾。 又由于T无回路,则删去任一边,便不连通

(5)→(6): 在T是连通图,但删去任一边后,便不连通的条件下证明T的每一对不同的顶点之间有唯一的一条路。 由于T是连通的,任两点之间有一条路。如果某两个顶点之间多于一条路,则T中必含有回路,(Why?) 删去该回路上任一边,图仍连通,与假设矛盾。 (6)→(1): 在T的每一对不同的顶点之间有唯一的一条路的条件下,证明T是无回路的连通图。显然图是连通的。若有回路, 则回路上任两点之间有两条路, 从而导致矛盾。

推论:若G是n个顶点个分支的森林, 则G有n-条边。 定理7.2:在任一棵非平凡树T中, 至少有两片树叶。 证明:由于T是连通的,对T的任一顶点vi,d(vi)1,并且e=n-1,即所有顶点度数之和=2(n-1). 下面证明T中至少有两个顶点的度数为 1 。

7.2生成树与割集

例如下图中给定图G,粗线表示G的生成树T,它的边集是{e1,e4,e5,e6},的边集是{e2,e3,e7,e8}。

定理7.3:G是连通图当且仅当G有生成树。 证明:1) G有生成树证明G是连通图。因为生成树是连通图,生成子图连通,则原图一定连通。 2) G是连通图证明G有生成树 设G是连通图,若G没有回路,则G本身就是生成树; 若G只有一条回路,从这条回路中删去一条边, 仍保持连通, 得到一棵生成树; 若G中有多条回路, 则重复上述过程, 直到得到一棵生成树为止。

设连通图G有n个顶点, e条边, 那么G的任一棵生成树有n-1条枝, e-n+1条连枝。 设图G有n个顶点,e条边, 个分支, n,e,之间有两个简单的关系式: n-0; e-n+0。 定义 7.3:设图G有n个顶点, e条边, 个分支, 称n-为G的秩, 称e-n+为图G的零度。 显然G的秩是G的各分支中生成树的枝数之和, G的零度是G的各分支中生成树的连枝数之和。 对于连通图G来说, 它的秩为n-1, 零度为e-n+1。

定义7.4:设D是图G的一个边集, 若在G中删去D的全部边后所得图的秩减少 1 , 而删去D的任何真子集均无此性质, 称D为G的割集。 二、割集与断集 定义7.4:设D是图G的一个边集, 若在G中删去D的全部边后所得图的秩减少 1 , 而删去D的任何真子集均无此性质, 称D为G的割集。 图 (a) 中边集{e1, e3,e5,e6,e8}是割集,但删去任何真子集不具有此性质

图(b)中边集{e1, e2} 是割集 边集{ e1,e2,e3,e4} 不是割集,

定义7.5:设图G的顶点非空真子集为V1V, 在G中一个端点在V1中, 另一端点在V(G)-V1中的所有边组成的集合称为G的一个断集或称边割,记为 E(V1(V(G)-V1)), 简记为(V1, V(G)-V1)。 当|(V1, V(G)-V1)|=1时, (V1, V(G)-V1)中的那条边称为割边或 桥。 图 7.2(b) 中边集{e1,e2}和{e1,e2,e3,e4}都是断集(边割)。 割集是断集, 反之不一定。

作业: P131 8,15,16 P152 1,2,3,4,5,6,7,8