分子模拟方法 1. 简介 1.1. 分子模拟的目的 1.2. 平衡统计物理基本概念 简化计算量 (相对第一性计算而言)

Slides:



Advertisements
Similar presentations
统计物理学习讲义 中科院数学院复杂系统研究中心 复杂系统学习班 (CSSGBJ) 韩 靖 2003 年 10 月 27 日.
Advertisements

全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
文学灵感论 蓦然回首,那人却在灯火阑珊处 ……. 生活中、科学中的灵感 运动鞋 电梯 阿基米德与皇冠 牛顿的三大定律.
信号与系统 第三章 傅里叶变换 东北大学 2017/2/27.
王同学的苦恼﹗ MC 4.1 诚可贵﹗.
热力学统计物理 河南教育学院物理系.
我的家乡 南通 ….
天 狗 郭沫若.
第七章 系综理论 §7-1 相空间,刘维尔定理 §7-2 微正则分布及其热力学公式 §7-3 正则分布及其热力学公式
6.6 单侧置信限 1、问题的引入 2、基本概念 3、典型例题 4、小结.
五、学习方法及应考对策 (一)学习方法 1.保证复习时间,吃透教材:上课之前应该对课程相关内容进行预习,把不理解的问题记录下来,带着问题听课。考试之前务必把课本看3遍以上,第一遍一定要精读,最好能做笔记,边读边记,不要快,要记牢。第二、三遍可以查缺补漏型的看,通过做题目看书,加深课本印象。 2.加强概念、理论性内容的重复记忆:概念、理论性内容一般比较抽象,所以在理解的基础上一定要重复记忆,在接受辅导之后,再加以重点记忆,以便及时巩固所学内容,切忌走马观花似的复习,既浪费时间,效果也不好。
不确定度的传递与合成 间接测量结果不确定度的评估
第七章 玻耳兹曼统计 热力学量的统计表达式 已经完成了统计物理学的第一步(导出了热力学的分布函数)
2-7、函数的微分 教学要求 教学要点.
第一章 商品 第一节 价值创造 第二节 价值量 第三节 价值函数及其性质 第四节 商品经济的基本矛盾与利己利他经济人假设.
程序的形式验证 - 简介 中国科学院软件研究所 张文辉 1.
Introduction To Mean Shift
统计热力学 - 基础、应用和前沿 侯中怀 厦门.
Geophysical Laboratory
§3.7 热力学基本方程及麦克斯韦关系式 热力学状态函数 H, A, G 组合辅助函数 U, H → 能量计算
统计热力学初步 侯中怀 电话:
第六章 自旋和角动量 复旦大学 苏汝铿.
柯红卫 兰州大学 Hong-Wei Ke and Xue-Qian Li, arXiv: and  arXiv:
4. 简单的数据分析 5. 高级技术 6. 自由能计算 总能量,动能,势能,比热容,瞬时温度,瞬时压强,相变特征 结构特征
貨幣需求與貨幣市場的均衡.
第三章 量子统计物理学基础 热力学和统计物理: 经典统计物理和量子统计物理:粒子遵从经典(量子)力学规律。
第三章 量子统计物理学基础 热力学和统计物理: 经典统计物理和量子统计物理:粒子遵从经典(量子)力学规律。
第8章 静电场 图为1930年E.O.劳伦斯制成的世界上第一台回旋加速器.
从物理角度浅谈 集成电路 中的几个最小尺寸 赖凯 电子科学与技术系 本科2001级.
第7讲 自旋与泡利原理.
简单介绍 用C++实现简单的模板数据结构 ArrayList(数组, 类似std::vector)
III. 分子模拟方法 1. 简介 1.1. 分子模拟的目的 1.2. 平衡统计物理基本概念 简化计算量 (相对第一性计算而言)
Statistical Thermodynamics and Chemical Kinetics
过程自发变化的判据 能否用下列判据来判断? DU≤0 或 DH≤0 DS≥0.
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
光子能量线性_不同灵敏层厚度 photon,Cell Size 5x5mm
商業行為成立的要件 動動腦 Q 請試著判斷下列何者為商業行為? 請試著判斷下列何者為商業行為?.
Home Work 现代科学中的化学键能及其广泛应用 罗渝然(Yu-Ran Luo)
3. 分子动力学 (Molecular Dynamics,MD) 算法
作业 P152 习题 复习:P 预习:P /5/2.
第四章 热力学基础 物理学. 本章概述 一、什么是热学? 研究物质处于热状态下有关性质和规律的物理学分支学科。 二、研究方法
激光器的速率方程.
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
第15章 量子力学(quantum mechanics) 初步
准静态过程 功 热量.
相关与回归 非确定关系 在宏观上存在关系,但并未精确到可以用函数关系来表达。青少年身高与年龄,体重与体表面积 非确定关系:
一 测定气体分子速率分布的实验 实验装置 金属蒸汽 显示屏 狭缝 接抽气泵.
第一部分:概率 产生随机样本:对分布采样 均匀分布 其他分布 伪随机数 很多统计软件包中都有此工具 如在Matlab中:rand
第18 讲 配合物:晶体场理论.
海报题目 简介: 介绍此项仿真工作的目标和需要解决的问题。 可以添加合适的图片。
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
第二章 均匀物质的热力学性质 基本热力学函数 麦氏关系及应用 气体节流和绝热膨胀.
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
正弦函数图象是怎样画的? 正切函数是不是周期函数? 正切函数的定义域是什么? y=tanx,xR, 的图象 叫做正切曲线;
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
热力学第一定律的应用 --理想气体等容过程、定容摩尔热容 --理想气体等压过程 、定压摩尔热容.
百艳图.
滤波减速器的体积优化 仵凡 Advanced Design Group.
LCS之自由电子激光方案 吴钢
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
FH实验中电子能量分布的测定 乐永康,陈亮 2008年10月7日.
106年免試入學第一次模擬 選填重要日程表說明 1.106年1月10日中午12時~106年1月16日中午12時完成第一次模擬
热力学与统计物理 金晓峰 复旦大学物理系 /7/27.
本底对汞原子第一激发能测量的影响 钱振宇
B12 竺越
位似.
《偏微分方程》第一章 绪论 第一章 绪论 1.1.
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
Sssss.
海报题目 简介: 介绍此项仿真工作的目标和需要解决的问题。 可以添加合适的图片。
Presentation transcript:

分子模拟方法 1. 简介 1.1. 分子模拟的目的 1.2. 平衡统计物理基本概念 简化计算量 (相对第一性计算而言) 着重于有限温度下体系的性质 观察物质微观运动的细节 计算机虚拟实验,联系解析理论与实体实验的桥梁 By Christoph Dellago 1.2. 平衡统计物理基本概念 势能面(potential energy surface):由不同构型形成的势能的集合。 系综(ensemble):系统在给定宏观条件下所有状态的集合。 两个基本假设:等几率原理与各态历经。

等几率原理(principle of equal weights):一个热力学体系有相同的几率访问每一个微观态(注意:不是能量的等几率!一个能量一般会对应很多微观态)。由等几率原理推导得出 Boltzmann 分布: 其中配分函数(partition function) 各态历经(egodicity):只要系统演化无穷长时间,总有几率历经势能面上的所有点。即在极限情况下,系综平均和时间平均是等价的。 系综平均:蒙特卡罗模拟(Monte Carlo, MC) 时间平均:分子动力学模拟(Molecular Dynamics, MD)

常用系综 微正则系综 (Microcanonical Ensemble): NVE 皆为常数。 正则系综 (Canonical Ensemble): NVT 皆为常数。 巨正则系综 (Grandcanonical Ensemble): μVT 皆为常数,粒子数不固定。 等压-等温系综 (Isobaric-Isothermal Ensemble): NPT 皆为常数。 等张力-等温系综 (Isotension-Isothermal Ensemble): 模拟盒子的形状可变。 常用热力学量 动能 温度 其中 d 是空间维数 势能 压强 焓 可以理解为 NPT 下的有效总内能

1.3. 模拟与采样 熵 其中 Ω是系统的总微观状态数 Helmholtz 自由能 NVT 下的自由能 Gibbs 自由能 NPT 下的自由能 化学势 1.3. 模拟与采样 空间的连续性:离散模型,如伊辛(Ising)模型,连续模型 边界条件:自由、刚性、周期 周期性边界条件 (Periodic Boundary Condition, PBC):模拟的盒子中的粒子与无穷多的镜像中的粒子有相互作用,从而可以用~103-106个粒子模拟~1023个粒子的体系。

特征长度 (characteristic length):某一特定物理量在空间的相关性的长度。原则上,模拟盒子的边长应该大于所关心的物理量的特征长度。具体操作上,可以通过变化模拟尺寸来了解有限尺度效应 (finite size effect) 的影响。 作用势的截断距离 (cutoff distance):小于模拟盒子的边长的一半以避免与同一粒子的两个镜像同时作用。有简单截断、截断平移、最小镜像法三种处理方法。 采样 (sampling):本质在于在有限时间内进行重要性采样 (importance sampling),即采样对系综平均贡献最大的瞬时量的子集。一般采用均匀时间间隔的采样。 初始构型 (Initial Configuration):尽量接近平衡态。一般需要一段初始的模拟过程以让初始构型达到平衡。在这段初始的模拟过程中不采样。需要某些参数来量化观察系统是否平衡(如液体的体积很容易平衡,势能其次,而扩散系数则较难)。 样本的相关度 (Correlation):离得越近的采样样本相关度越大。相关的样本不影响平均值,但是影响误差范围。