定理21.9(可满足性定理)设A是P(Y)的协调子集,则存在P(Y)的解释域U和项解释,使得赋值函数v(A){1}。

Slides:



Advertisements
Similar presentations
夯实教师教育 办好非师范教育 ---- 以外语专业为例 河北师范大学 李正栓. 1. 坚定不移地实施教师教育 A. 关键词:师范院校 师范院校是以培育师资为目的的教育机构,多属于高等教育 层级。 含 “ 师范大学 ” 或 “ 师范学院 ” 。另外,由师专升为本科的院校 多数更名为 “XX 学院 ”
Advertisements

写作中的几点小技巧 金乡县羊山中学 张秀玲. 一、写外貌不用 “ 有 ” 作文如何来写外貌?同学们的作文里总会出现类 似这样的句子: “ XX 可漂亮了,她有一头卷卷的黄头 发,有一双乌黑的葡萄般的大眼睛,有高高的鼻子, 还有一张樱桃小嘴。 ” 如果试着去掉文中的 “ 有 ” ,把文字重新修改一遍,
十大写作技巧. 一、写外貌不用 “ 有 ” 作文如何写外貌?孩子的作文里总会看到类似这样的名 子: “XX 可漂亮了,她有一头卷卷的黄头发,有一双乌黑的 葡萄般的大眼睛,有一个高高的鼻子,还有一张樱桃小嘴。 ” 如果你试着让他们去掉文中的 “ 有 ” ,把文字重新串联一遍, 会发现作文顺了很多。 写上段文字的同学经蒋老师指导后修改如下:
招商谈判技巧 芝麻官营销. 技巧原则 孙子兵法云: “ 兵无常势,水无常形,能 因敌之变化而取胜者,谓之神。 ” “ 内功心法 ” 只有在真正实践中才能体会、 掌握。 谈判有没有具体的套路?有没有 “ 一招制 敌 ” 的擒拿手?
商管群科科主任 盧錦春 年 3 月份初階建置、 4 月份進階建置、 5 月份試賣與對外營業。
第 4 章 存 貨 存貨之意義及內容 存貨數量之衡量制度 存貨成本之衡量方法 成本之續後衡量 存貨之估計方法 總目次 會計學 III
“ 十二五 ” 广东省科技计划项目 经费监管培训 广东省科技厅 一、专项经费管理法规 一、专项经费管理法规 二、经费监督检查 二、经费监督检查 三、项目预算调整管理 三、项目预算调整管理 四、课题经费预算执行管理 四、课题经费预算执行管理 五、项目(课题)财务验收 五、项目(课题)财务验收 2.
1 語音下單代表號 請輸入分公司代碼 2 位結束請按#字鍵 統一證券您好 ﹗ 請輸入分公司代碼結束請按#字鍵,如不知分公司代碼請按*號。 請輸入您的帳號後 7 位 結束請按#字鍵 請在聽到干擾音時輸入您的密碼結束請按#字鍵 主選單一覽表 委託下單請按 1 ; 取消下單請按 2 成交回報請按.
人權教育融入教學與 法治教育 彭巧綾 蔡永棠 閱讀理解 六頂思考帽 以概念圖整理閱讀理解 指導學生運用關鍵詞,繪製概 念圖,並分享修正。
科学就医健康教育核心信息 健康中国行·科学就医 一、倡导科学就医 二、遵从分级诊疗 三、定期健康体检 四、鼓励预约挂号 五、就医注意事项
少年儿童营养配餐与饮食安全 科学饮食为孩子的未来积攒本钱.
★中国近代史: 1840年————1949年 鸦片战争 新中国诞生 ★历史线索: 1、资本主义列强对中国的侵略 2、中国人民的反抗和探索:
义务教育课程标准实验教材 四年级下册 语文园地六 词语盘点 习作 口语交际 我的发现 日积月累 展示台.
被 江 泽 民 残 酷 迫 害 致 死 的 法 轮 功 学 员 李竟春,女,1954年3月16日出生,江西省九江市人。于2000年12月18日到北京证实大法,关押在北京市门头沟看守所遭受非人的迫害。在狱中李竟春绝食抗争被管教骗喝一瓶“可疑的豆浆”后一直咳嗽不断,发烧呕吐,吐出白色有强烈异味液体,于2000年1月4日死亡。
目录 如何职位分析调查表 职位分析的目的与意义 职位调查表内容与要点说明 职位分析注意事项 职位分析调查工作计划.
1 修辞手法 2 表现手法 3 表达方式 4 结构技巧 表达技巧.
个人简历 制作 天津民族中专 刘冬.
第八编 清代文学 清代文学绪论 第一章 清代诗词文 第二章 《长生殿》与《桃花扇》 第三章 《聊斋志异》 第四章 《儒林外史》
2015年衢州开化 事业单位备考讲座 浙江研究院 刘洁.
視力不良學(幼)童 篩檢與矯治常見問題 長庚醫院 兒童眼科 楊孟玲 醫師.
入党基础知识培训.
问卷调查法.
小一中文科 家長工作坊
第三章 企业主要经济业务核算 学习目的和要求:通过对工业企业的主要经济业务的了解,要求学生掌握、巩固帐户与借贷记帐法的相关知识及其运用,并进一步了解和熟悉会计核算方法。 本章重点与难点问题是:企业在各阶段的业务核算 内容提要:本章首先介绍企业在各不同阶段(企业创立阶段、企业供应阶段、企业生产阶段、企业销售阶段等)的业务内容;然后介绍了各阶段业务核算所需设置的帐户及其帐户的功能与结构;最后举例说明各阶段业务的核算。
商業服務學程 簡報者:雷天楠.
校本培训 常州市新北区新桥实验小学 金文英 团体活动助人成长 校本培训 常州市新北区新桥实验小学 金文英
2014年造价员资格考试 建设工程造价管理基础知识 徐建元.
教師權益─ 退撫制度變革修法 吳忠泰 退撫制度變革修法電子檔可在全教總網站下載分享
III. 辛亥革命及其影響 1. 辛亥革命的爆發及結果 1.
【 准 备 上 课 啦 】 心 境 —— 快 乐 源 泉 学习 — 悦于心 聚于魂 化于行.
第七章 无形资产.
心靈雞湯III-青春紀事 64篇關於愛、生活與學習的故事
《幼儿园模拟教学》(第一章 第二章) 呼伦贝尔学院 教育科学学院 学前教育教研室.
广州事业单位面试专项练习 主讲:蔡厚佳 微博:腰果公考菜菜爱做梦 2016年04月29日-05月05日.
幂函数.
青岛市农村实用人才高等学历教育 2013年秋季入学测试考前练兵 语文----写作部分辅导
高等学校会计制度的学习体会 (第二次征求意见稿).
1 1 1.
公務員法 楊智傑.
勤奮品格簡介 蘇澳品格月會 2010年 3月.
§3 全称量词与存在量词 3.1 全称量词与全称命题 3.2 存在量词与特称命题 3.3 全称命题与特称命题的否定.
學校:光春國中 班級:七年三班 製作團隊: 顏序芳 李邰岳 謝宜軒
103校務評鑑程序與注意事項
提升溝通好辦法III 「說」得其所 言語治療組 2011年7月6日.
“深入推进依法行政加快建设法治政府” -《法治政府建设实施纲要》解读
第六节 可降阶的二阶微分方程 一、 型的微分方程 二、 型的微分方程 三、 型的微分方程.
亚洲清洁空气行动中心青岛机动车排放管理研讨会 2009年8月4日 青岛
国泰人寿真情分享.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
100學年度土木工程系專題研究成果展 題目: 指導老師:3223 專題學生:2132、2313 前言: 成果: 圖1 圖2 方法與流程:
§4 谓词演算的性质 谓词逻辑Pred(Y)。 是Y上的关于类型 {F,→,x|xX}的自由代数 赋值 形式证明
第五讲 从常用连续分布到二维变量分布 本次课讲授:第二章的 ; 下次课讲第三章的 ;
人際歷程取向心理治療(III) 治療架構 李正源.
§2 谓词公式语义解释 个体变元,谓词,函数词和个体常元 需要逐层解决.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
立定心志、起來建造神的殿 第四季 (歷代志上研讀) 「現在你們應當立定心意, 尋求耶和華─你們的神; 也當起來建造耶和華神的聖所。」
定义19.13:设p,qP(Y),若{p}╞q且{q}╞p,则称p,q语义等价,记为p │==│ q
1.设A和B是集合,证明:A=B当且仅当A∩B=A∪B
P A╞* p表示 :不存在一个使得v(A){1}而v(p)=0 的解释域U。
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
定义21.17:设P1=P(Y1)和P2=P(Y2),其个体变元与个体常元分别为X1,C1和 X2,C2,并且或者C1=或者C2。一个半同态映射(,):(P1,X1∪C1)→(P2,X2∪C2)是一对映射: P1→P2; : X1∪C1→X2∪C2,它们联合实现了映射p(x,c)→(p)((x),
§4 连续型随机变量.
定义19.17:设P1=P(Y1)和P2=P(Y2),其个体变元与个体常元分别为X1,C1和 X2,C2,并且或者C1=或者C2。一个半同态映射(,):(P1,X1∪C1)→(P2,X2∪C2)是一对映射: P1→P2; : X1∪C1→X2∪C2,它们联合实现了映射p(x,c)→(p)((x),
6.1.1 平方根.
三、 动量和角动量 1 、 质点动量定理 动量 冲量.
第二章 一元一次不等式和一元一次不等式组 回顾与复习(一).
§4一般逻辑系统 定义18.17:一个逻辑L是由下述集合所组成的系统:元素(称为命题)集P;函数集V(这些函数都是从P到某个值集W的,称为赋值.特别若|W|>2则称L为多值逻辑系统);以及对应于P的每个子集A导出P中元素的有限序列集(称为由前提A得到的证明)。
香港歷史系列III 法治的基石.
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
一、格 格的定义,最大元,最小元,有界格,有补格 子格(是格不一定是子格), 给定Hasse图,判断是否分配格,布尔格
Presentation transcript:

定理21.9(可满足性定理)设A是P(Y)的协调子集,则存在P(Y)的解释域U和项解释,使得赋值函数v(A){1}。 不失一般性,假设X,A是满足引理21.5的(i),(ii)和(iii)。现构造解释域如下: 令U=I,1(c)=c, 2(fni)=fn'i,3(Rni)=Rn'i,定义fn'i(t1,…,tn)=(fni, t1,…,tn),并规定:当 Rni(t1,…,tn)A时,(t1,…,tn)Rn'i,否则,(t1,…,tn)Rn'i。又定义变元指派0(x)=x,由此扩张为项解释,这就构成了P(Y)的解释域和项解释。

在此U和下,定义函数v: P(YU,)→Z2如下:当p A时,v(p)=1,否则v(p)=0。下面证明v是满足赋值函数的定义(a)(b)(ck) 定理21.10(完备性定理):设AP(Y),pP(Y), 若A╞p,则A┣p。 (紧致性定理):如果A╞p,则存在A的某个有限子集A0,使得A0╞p。 命题逻辑 Prop(X)的有效性和可证明性是可判定的, 谓词逻辑Pred(Y)的有效性和可证明性则是不具有可判定性的

P424 12.(4)(5),13 [21.13]下述结论是否正确,并说明理由 (6)╞xp(x)→p(t) (4)╞(p→xq(x))→x(p→q),这里x不在p中自由出现。 (5)╞(p→xq(x))→x(p→q),这里x不在p中自由出现。 [21.14]设项t对于谓词合式公式p(x)中的x是自由的,则当╞p(x)时,必有╞ p(t)。

23.(1)设AP(Y),如果A∪{p(x)}╞q,这里x不在A和q中自由出现,则A∪{xp(x)}╞q。 (2)设AP(Y),如果A╞p(y),则A╞xp(x),其中的p(x)是在p(y)中将y的某些(不一定所有)出现替换为x而得。 20.