第六章 脉冲波形的产生与整形 6.1 集成555定时器 6.2 施密特触发器 6.3 多谐振荡器 6.4 单稳态触发器.

Slides:



Advertisements
Similar presentations
第8章 信号的发生 和信号的转换 8.1 电压比较器 8.2 非正弦波发生器 8.3 正弦波发生器 8.4 精密整流电路.
Advertisements

第3章 分立元件基本电路 3.1 共发射极放大电路 3.2 共集电极放大电路 3.3 共源极放大电路 3.4 分立元件组成的基本门电路.
实验四 利用中规模芯片设计时序电路(二).
同相输入比例运算电路 执讲人;李先知 组 别: 电子电工组 丰县职教中心 制作.
第五章 触发器 5.1 概述(掌握触发器基本概念) 5.2 SR锁存器(掌握基本结构及动作特点)
一、单稳态触发电路构成 (一)微分型单稳态触发器 §6.4 单稳态触发电路
第六章 脉冲波形 的产生和整形 本章的重点: 本章的难点:
9.2.1 振荡基础知识 振荡条件 起振 稳幅 振荡电路的基本组成部分 振荡电路的分析方法
正弦波振荡电路 电压比较器 非正弦波产生电路 波形变换电路 第九章 波形产生和变换 石英晶体波振荡电路 RC正弦波振荡电路
脉冲电路 刘鹏 浙江大学 信息与电子工程学院 May 18, 2017 数字系统设计I
EE141 脉冲电路3 刘鹏 浙江大学信息与电子工程学院 May 25, 2017.
数字系统设计I 脉冲电路2 刘鹏 浙江大学信息与电子工程学院 May 23, 2017.
数字系统设计 Digital System Design
数字系统设计 Digital System Design
第八章 波形的产生与变换电路 8.1 正弦波振荡的基本原理 8.2 RC正弦波振荡电路 8.3 LC正弦波振荡电路 8.4 石英晶体振荡电路
EE141 脉冲电路3 刘鹏 浙江大学信息与电子工程学院 May 25, 2017.
第六章 概述 一、矩形脉冲的基本特性 1. 矩形脉冲的二值性 二进制数字信号 矩形脉冲 高、低电平 1、0 2. 矩形脉冲的特性参数
第 7 章 信号产生电路 7.1 正弦波振荡电路 7.2 非正弦波信号产生电路 7.3 锁相频率合成电路 第 7 章 小 结.
现代电子技术实验 4.11 RC带通滤波器的设计与测试.
图4-1 带有电压串联负反馈的两级阻容耦合放大器
数字系统设计I 脉冲电路2 刘鹏 浙江大学信息与电子工程学院 May 23, 2017.
EE141 脉冲电路3 刘鹏 浙江大学信息与电子工程学院 May 29, 2018.
时序逻辑电路实验 一、 实验目的 1.熟悉集成计数器的功能和使用方法; 2.利用集成计数器设计任意进制计数器。 二、实验原理
2.5 MOS 门电路 MOS门电路:以MOS管作为开关元件构成的门电路。
实验六 积分器、微分器.
第一章 半导体材料及二极管.
第二章 双极型晶体三极管(BJT).
确定运放工作区的方法:判断电路中有无负反馈。
实验五 555时基电路及其应用 一、实验目的 1、熟悉555电路的工作原理及其特点 2、掌握555电路的基本应用.
第6章 第6章 直流稳压电源 概述 6.1 单相桥式整流电路 6.2 滤波电路 6.3 串联型稳压电路 上页 下页 返回.
第7章 集成运算放大电路 7.1 概述 7.4 集成运算放大器.
第四章 MCS-51定时器/计数器 一、定时器结构 1.定时器结构框图
10.2 串联反馈式稳压电路 稳压电源质量指标 串联反馈式稳压电路工作原理 三端集成稳压器
数字电子技术 Digital Electronics Technology
集成运算放大器 CF101 CF702 CF709 CF741 CF748 CF324 CF358 OP07 CF3130 CF347
晶体管及其小信号放大 -单管共射电路的频率特性.
Three stability circuits analysis with TINA-TI
晶体管及其小信号放大 -单管共射电路的频率特性.
第8章 脉冲波形的产生与整形 8.1 概述 定时器及其应用 8.3 集成单稳态触发器 8.4 集成逻辑门构成的脉冲电路.
第五章 触发器 5.1 基本触发器 一、基本RS触发器 1.用与非门组成的基本RS触发器
实验二 射极跟随器 图2-2 射极跟随器实验电路.
实验四 555集成定时器的应用-2.
实验六 触发器逻辑功能测试 一、实验目的 二、实验仪器 1、熟悉并掌握RS、D、JK触发器的构成、工作原理和 功能测试方法。
长春理工大学 电工电子实验教学中心 数字电路实验 数字电路实验室.
实验二 带进位控制8位算术逻辑运算实验 带进位控制8位算术逻辑运算: ① 带进位运算 ② 保存运算后产生进位
第18章 集成触发器 18.1 RS触发器 18.2 几种常见的触发器.
结束 放映 5.2 单稳态触发器 用门电路构成的单稳态触发器 集成单稳态触发器及其应用 返回 2019/5/6.
现代电子技术实验 数字频率计 实验目的 方案设计 单元电路 调整测试.
现代电子技术实验 波形发生器 实验目的 方案设计 单元电路 调整测试.
《数字电子技术基础》(第五版)教学课件 清华大学 阎石 王红
集成与非门在脉冲电路中的应用 实验目的 1. 了解集成与非门在脉冲电路中 的某些应用及其原理。 2. 学习用示波器观测波形参数与
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
第4章 触发器.
调幅与检波的研究 实验目的 实验原理 实验内容 注意事项.
概述 一、基本要求 1. 有两个稳定的状态(0、1),以表示存储内容; 2. 能够接收、保存和输出信号。 二、现态和次态
确定运放工作区的方法:判断电路中有无负反馈。
实验一 单级放大电路 一、 实验内容 1. 熟悉电子元件及实验箱 2. 掌握放大器静态工作点模拟电路调试方法及对放大器性能的影响
实验八 555集成定时器的应用 实验目的 实验原理 实验内容 注意事项.
现代电子技术实验 同步计数器及其应用研究 实验目的 实验原理 实验内容 注意事项.
第七章 脉冲电路 7.1 概述 7.2 集成555 定时器 7.3 施密特触发器 7.4 单稳态触发器 7.5 多谐振荡器.
信号发生电路 -非正弦波发生电路.
电子技术基础.
第12章 555定时器及其应用 一. 555定时器的结构及工作原理 1. 分压器:由三个等值电阻构成
课程名称:模拟电子技术 讲授内容:放大电路静态工作点的稳定 授课对象:信息类专业本科二年级 示范教师:史雪飞 所在单位:信息工程学院.
9.5 差分放大电路 差分放大电路用两个晶体管组成,电路结构对称,在理想情况下,两管的特性及对应电阻元件的参数值都相同,因此,两管的静态工作点也必然相同。 T1 T2 RC RB +UCC + ui1  iB iC ui2 RP RE EE iE + uO  静态分析 在静态时,ui1=
第二章 集成门电路 2.1 概述 2.2 TTL 门电路 2.3 CMOS 门电路 2.4 各种集成逻辑们的性 能比较 第2章 上页 下页
第 10 章 运算放大器 10.1 运算放大器简单介绍 10.2 放大电路中的负反馈 10.3 运算放大器在信号运算方面的应用
第七章 脉冲电路.
9.6.2 互补对称放大电路 1. 无输出变压器(OTL)的互补对称放大电路 +UCC
Presentation transcript:

第六章 脉冲波形的产生与整形 6.1 集成555定时器 6.2 施密特触发器 6.3 多谐振荡器 6.4 单稳态触发器

6.1 集成555定时器 一、555定时器的电路结构 v+> v-,vO=1 v+< v-,vO=0 由以下几部分组成: (1)三个5k电阻组成的分压器。 (2)两个电压比较器 C1和C2。 电压比较器的功能: v+> v-,vO=1 v+< v-,vO=0

(3)基本RS触发器, (4)放电三极管T及缓冲器G。 电路符号

二.工作原理 (1)4脚为复位输入端( RD ),当RD为低电平时,不管其他输入端的状态如何,输出vo为低电平。正常工作时,应将其接高电平。 (2)5脚为电压控制端,当其悬空时,比较器C1和C2的比较电压分别为2/3VCC 和1/3VCC 。 2/3VCC 1/3VCC

(3)2脚为触发输入端,6脚为阈值输入端,两端的电位高低控制比较器C1和C2的输出,从而控制RS触发器,决定输出状态。 功能表 2/3VCC 阈值 输入 复位 输出 vI1 vI2 RD vo × <2/3VCC >2/3VCC <1/3VCC >1/3VCC 1 不变 1/3VCC

6.2 施密特触发器 施密特触发器——具有回差电压特性,能将边沿变化缓慢的电压波形整形为边沿陡峭的矩形脉冲。 一. 用555定时器构成的施密特触发器 1. 电路组成及工作原理 2/3VCC 1/3VCC

电路符号

2. 电压滞回特性和主要参数 Vo 传输特性 (1)电压滞回特性 (2)主要静态参数 Vi VOH VOL (a)上限阈值电压VT+ 传输特性 VOH VOL (1)电压滞回特性 (2)主要静态参数 (a)上限阈值电压VT+ vI上升过程中,输出电压vO由高电平VOH跳变到低电平VOL时,所对应的输入电压值。VT+=2/3VCC。 (b)下限阈值电压VT — vI下降过程中,vO由低电平VOL跳变到高电平VOH时,所对应的输入电压值。VT—=1 /3VCC。 (3)回差电压ΔVT ΔVT= VT+-VT—=1 /3VCC 2/3VCC 1/3VCC ΔVT 1/3VCC 2/3VCC VT — VT+ VT+ ΔVT VT —

电路符号 vO1 O2 v t O1 VCC2

二. 集成施密特触发器 1. CMOS集成施密特触发器CC40106 2. TTL集成施密特触发器74LS14

三. 施密特触发器的应用举例 VT+ VT- 1. 用作接口电路——将缓慢变化的输入信号,转换成为符合TTL系统要求的脉冲波形。 2. 用作整形电路——把不规则的输入信号整形成为矩形脉冲。 输入 VT+ VT- 输出

3. 用于脉冲鉴幅——从一系列幅度不同的脉冲信号中,选出那些幅度大于VT+的输入脉冲。

8.3 多谐振荡器 多谐振荡器——能产生矩形脉冲波的自激振荡器。 一. 用555定时器构成的多谐振荡器 vc t vo 1. 电路组成及工作原理 vc t vo 2/3VCC 1/3VCC

EWB演示——555组成多谐振荡器

2. 振荡频率的估算 (1)电容充电时间T1:(用三要素法计算) vc t vo T (2) 电容放电时间T2 vc t vo 2/3VCC 1/3VCC (2) 电容放电时间T2 (3)电路振荡周期T T=T1+T2=0.7(R1+2R2)C (4)电路振荡频率f T T1 T2 (5)输出波形占空比q

二. 占空比可调的多谐振荡器电路 利用二极管的单向导电性,把电容C充电和放电回路隔离开,再加上一个电位器,便可构成占空比可调的多谐振荡器。 可计算得: T1=0.7R1C T2=0.7R2C 占空比:

三. 石英晶体多谐振荡器 1.石英晶体的选频特性 X 感性 容性 有两个谐振频率。当f=fs时,为串联谐振,石英晶体的电抗X=0; 当f=fp时,为并联谐振,石英晶体的电抗无穷大。 由晶体本身的特性决定: fs≈ fp≈ f0(晶体的标称频率) 石英晶体的选频特性极好,f0十分稳定,其稳定度可达10-10~10-11。 X 感性 容性

2. 石英晶体多谐振荡器 (1)串联式振荡器 R1、R2:使两个反相器都工作在转折区,成为具有高放大倍数的放大器。 对于TTL门,常取R1=R2=0.7~2kΩ,对于CMOS门,常取R1=R2=10~100MΩ;C1=C2是耦合电容。 石英晶体工作在串联谐振频率f0下,只有频率为f0的信号才能通过,满足振荡条件。因此,电路的振荡频率= f0,与外接元件R、C无关,所以这种电路振荡频率的稳定度很高。

(2)并联式振荡器 RF是偏置电阻,保证在静态时使G1工作转折区,构成一个反相放大器。 晶体工作在略大于fS与 fP之间,等效一电感,与C1、C2共同构成电容三点式振荡电路。电路的振荡频率= f0。 反相器G2起整形缓冲作用,同时G2还可以隔离负载对振荡电路工作的影响。

四.多谐振荡器应用实例 1. 简易温控报警器

2. 双音门铃。

3. 秒脉冲发生器 CMOS石英晶体多谐振荡器产生f=32768Hz的基准信号,经T/触发器构成的15级异步计数器分频后,便可得到稳定度极高的秒信号。 这种秒脉冲发生器可做为各种计时系统的基准信号源。

8.4 单稳态触发器 单稳态触发器——有一个稳态和一个暂稳态;在触发脉冲作用下,由稳态翻转到暂稳态;暂稳状态维持一段时间后,自动返回到稳态。 一. 用555定时器组成单稳态触发器 1. 电路组成及工作原理 (1)无触发信号输入时电路工作在稳定状态 当vI=1时,电路工作在稳定状态,即vO=0,vC=0。

(2)vI下降沿触发 当vI下降沿到达时,vO由0跳变为1,电路由稳态转入暂稳态。

(4)自动返回时间——当vC上升至2/3VCC时,vO变0,电路由暂稳态重新转入稳态。 (3)暂稳态的维持时间 在暂稳态期间,三极管T截止,VCC经R向C充电。时间常数τ1=RC, vC由0V开始增大,在vC上升到2/3VCC之前,电路保持暂稳态不变。 (5)恢复过程——当暂稳态结束后,C通过饱和导通的T放电,时间常数 τ2=RCESC,由于RCES很小,所以放电很快。C放电完毕,恢复过程结束。

2. 主要参数估算 T (1) 输出脉冲宽度Tw(用三要素法计算) (2)恢复时间tre tre=(3~5)τ2 (3)最高工作频率fmax vI周期的最小值: Tmin= tW+tre 最高工作频率: T TW

二.集成单稳态触发器74121 74121功能表 A1、A2是下沿有效的触发信号输入端,B是上沿有效的触发信号输入端。 vO vO 保持稳态 0 1 0 × 1 × 0 1 × × 0 1 1 × 下沿触发 1 ↓ 1 ↓ 1 1 ↓ ↓ 1 上沿触发 工作特征 vO vO 输 出 0 × ↑ × 0 ↑ A1 A1 B 输 入 74121功能表

集成单稳态触发器74121的外部元件连接方法: (a)使用外部电阻Rext且电路为下降沿触发的连接方式。 (b)使用内部电阻Rint且电路为上升沿触发的连接方式。

74121的主要参数 (1) 输出脉冲宽度tW 使用外接电阻: tW ≈0.7RextC 使用内部电阻: tW ≈0.7RintC 74121内部电阻=2kΩ,外接电阻Rext可在1.4~40kΩ之间选择, 外接电容C可在10pF~10μF之间选择, (2)输入触发脉冲最小周期Tmin Tmin= tW+tre (3)周期性输入触发脉冲占空比q 定义: q = tW/T 最大占空比: qmax= tW/ Tmin 所以,当R=2kΩ时, 最大占空比qmax为67%; 当R=40kΩ时,最大占空比qmax可达90%。

三.单稳态触发器的应用 1. 延时与定时 (1)延时 (2)定时 图中,v/O的下降沿比vI的下 降沿滞后了时间tW。 vO= vF。当v/O=0时, 与门关闭,vO为低电平。 与门打开的时间是单稳 输出脉冲v/O的宽度tW。

2. 整形 单稳态触发器能够把不规则的输入信号vI,整形成为幅度和宽度都相同的标准矩形脉冲vO。vO的幅度取决于单稳态电路输出的高、低电平,宽度tW决定于暂稳态时间。

3. 触摸定时控制开关 555定时器构成单稳态触发器。只要用手触摸一下金属片P,由于人体感应电压相当于在触发 输入端(管脚2)加入一个负 脉冲,555输出端输出高电平, 灯泡(RL)发光,当暂稳态 时间(tW)结束时,555输出 端恢复低电平,灯泡熄灭。 该触摸开关可用于夜间定时 照明,定时时间可由RC参数 调节。

4. 触摸、声控双功能延时灯 555和T1、R3、R2、C4组成单稳定时电路,定时(即灯亮)时间约为1分钟。当击掌声传至压电陶瓷片时,HTD将声音信号转换成电信号,经T2、T1放大,触发555,使555输出高电平,触发导通晶闸管SCR,电灯亮; 同样,若触摸金属片A时,人体感应电信号经R4、R5加至T1基极,也能使T1导通,触发555,达到上述效果。

练习一:8.4.3 图题8.4.3为一心律失常报警电路,图中vI是经过放大后的心电信号,其幅值vIm=4V。 (1)对应vI分别画出图中vo1、vo2、vo三点的电压波形; (2)说明电路的组成及工作原理。

8.2.1 如图所示,555构成的施密特触发器,当输入信号为图示周期性心电波形时,试画出经施密特触发器整形后的输出电压波形。

8.3.5 一过压监视电路如图所示,试说明当监视电压vx超过一定值时,发光二极管D将发出闪烁的信号。 提示:当晶体管T饱和时,555的管脚1端可认为处于地电位。

练习二:间歇振荡器 EWB演示——555组成间歇振荡器

练习三:报警器 EWB演示——555组成报警器

本章小结 1.多谐振荡器是一种自激振荡电路,不需要外加输入信号,就可以自动地产生出矩形脉冲。用555定时器可以组成多谐振荡器,用石英晶体也定时器可以组成多谐振荡器。石英晶体振荡器的特点是fo的稳定性极好。 2.施密特触发器和单稳态触发器,虽然不能自动地产生矩形脉冲,但却可以把其它形状的信号变换成为矩形波,为数字系统提供标准的脉冲信号。 3.555定时器是一种用途很广的集成电路,除了能组成施密特触发器、单稳态触发器和多谐振荡器以外,还可以接成各种灵活多变的应用电路。 4.除了555定时器外,目前还有556(双定时器)和558(四定时器)等。