Tel:18814100296 E-mail:hs0010910@jnu.edu.cn 环境微生物学 侯森 暨南大学环境学院 Tel:18814100296 E-mail:hs0010910@jnu.edu.cn
微生物的营养与营养类型 微生物的代谢 微生物的生长繁殖 环境因素对微生物生长的影响 第三章 微生物的生长与代谢 微生物的营养与营养类型 微生物的代谢 微生物的生长繁殖 环境因素对微生物生长的影响
第一节 微生物的营养与营养类型 微生物的营养:微生物获得和利用营养物质的过程。 营养物质:能够满足机体生长、繁殖和完成各种生理活动所需要的物质. 一、微生物细胞的化学组成 二、营养物质及其生理功能 三、微生物的营养类型 ★★Nutritional Requirements of Cells Every organism must find in its environment all of the substances required for energy generation and cellular biosynthesis. The chemicals and elements of this environment that are utilized for bacterial growth are referred to as nutrients or nutritional requirements. In the laboratory, bacteria are grown in culture media which are designed to provide all the essential nutrients in solution for bacterial growth. ★★★★ BASIC NUTRITIONAL REQUIREMENTS All life has the same BASIC NUTRITIONAL REQUIREMENTS which include: A SOURCE OF ENERGY. This may be light (the sun or lamps) or inorganic substances like sulfur, carbon monoxide or ammonia, or preformed organic matter like sugar, protein, fats etc. Without energy life can not exist and quickly dies or becomes inactive. A SOURCE OF NITROGEN. This may be nitrogen gas, ammonia, nitrate/nitrite, or a nitrogenous organic compound like protein or nucleic acid. A SOURCE OF CARBON. This can be carbon dioxide or monoxide, methane, carbon monoxide, or complex organic material A SOURCE OF OXYGEN. All cells use oxygen in a bound form and many require gaseous oxygen (air), but oxygen is lethal to many microbes. A SOURCE OF PHOSPHOROUS, SULFUR, MAGNESIUM, POTASSIUM & SODIUM. A SOURCE OF CALCIUM. Most cells require calcium in significant quantities, but some seem to only need it in trace amounts. A SOURCE OF WATER. All life requires liquid water in order to grow and reproduce; which is why the Mars Mission is so interested in water on Mars. Some resting stages of cells, like #bacterial spores, can exist for long periods without free water, but they do not grow or metabolize. A SOURCE OF MINERALS LIKE IRON, ZINC, COBALT ETC. These are called TRACE metals that are required by some enzymes to function. You will learn about their role in #Chap. VII. The sources of these various requirements DEFINES AN ORGANISM, so a description of every organism should include this information. Many bacteria can synthesize every complex molecule they need from the BASIC MINERALS, but others, said to be FASTIDIOUS, require PREFORMED organic molecules like vitamins, amino acids, nucleic acids, carbohydrates; humans are fastidious. In general bacterial pathogens need more PREFORMED ORGANIC MOLECULES than do nonpathogens, but that is not always true. For example some bacteria that are found in milk hardly make any of their own basic organic molecules, that is they let the cow (or more to the point the #microbes that live in the cow's gut) make these things for them. A simple rule of thumb is "if humans can use something for food, many microbes will also love it". The reverse is not always as true as microbes can "digest" some very strange substances including cellulose, sulfur, some plastics, turkey feathers and asphalt, to name just a few.
一、 微生物细胞的化学组成与营养物质 (一)微生物的化学组成 大量元素(macro element): 碳、氢、氧、氮、磷、硫、钾、钙、镁、钠、铁 微量元素(trace element): 锌、锰、钼、硒、钴、铜、钨、镍 、硼。
(二)营养物质及其生理功能 碳源 氮源 无机盐 生长因子 水 2. Nutrition a. Water Used to dissolve materials to be transported across the cytoplasmic membrane. b. Carbon Required for the construction of all organic molecules. Autotrophs use inorganic carbon (CO2) as their carbon source, while heterotrophs use organic carbon. Organism Carbon Source Energy Source Chemoautotrophs CO2 Inorganic Compounds Chemoheterotrophs Organic compounds Photoautotrophs Light Photoheterotrophs Organic Compounds c. Nitrogen Obtained from an inorganic source e.g. Nitrogen gas (N2) Nitrate (NO3), Nitrite(NO2), and Ammonia (NH3), or from an organic source e.g. Proteins, broken down to amino acids. Many organisms use nitrogen gas by nitrogen fixation to produce ammonia. d. Oxygen Required for aerobic respiration and energy production. Organisms are classified according to their gaseous requirements - Obligate aerobes, Microaerophilics, Facultative anaerobes, Obligate anaerobes and Aerotolerant anaerobes. e. Other nutrients Required in small amounts are Iron, Sulfur, Phosphorus and Minerals.
目前已能利用石油或石油产品作为碳源来生产氨基酸、维生素、辅酶、有机酸、核苷酸、抗生素与酶制剂等各种有用产品,利用纤维素的研究一直报道很多。 1、碳源(Carbon source) ◆定义:凡可被用来构成细胞物质或代谢产物中碳素来源的营养物质。 ◆种类: 无机含碳化合物:如CO2和碳酸盐等。 有机含碳化合物:如淀粉、有机酸、烃类、以及各种含碳的化合物。 在碳源物质中糖类是一般微生物最广泛利用的碳源,其次是醇类、有机酸和脂类等。在糖类中,单糖胜于双糖和多糖。 目前在发酵工业中用做碳源的物质主要是糖类物质,即单糖、饴糖、淀粉(玉米粉、山芋粉、野生植物淀粉等)、麸皮、各种米糠等。另外,国内外开展了以纤维素、石油、CO2和 H2等作为碳源与能源来培养微生物的代粮发酵的科学研究. 目前已能利用石油或石油产品作为碳源来生产氨基酸、维生素、辅酶、有机酸、核苷酸、抗生素与酶制剂等各种有用产品,利用纤维素的研究一直报道很多。 另外有些有毒的含碳物质如氰化物、酚等也能被某些细菌分解与利用,可以利用这类细菌来处理它们,主要在环保上应用。 微生物不同,利用上述含碳化合物的能力不同,如假单胞菌属中的某些种可以利用90种以上的不同类型的碳源物质;而某些甲基营养型细菌只能利用甲醇或甲烷等一碳化合物进行生长。
2.氮源(Nitrogen source ): 定义:凡用来构成菌体物质或代谢产物中氮素来源的营养源。 种类:无机氮:铵盐、硝酸盐、氨、N2等; 有机氮:蛋白质及其降解产物(如胨、肽等)、牛肉膏、玉米浆等 实验室常用氮源:硝酸盐、硫酸铵、尿素、蛋白胨等。 生产上常用氮源:硝酸盐、铵盐、鱼粉、玉米浆等。 以蛋白质形式存在的氮源不能被微生物直接吸收利用,必须通过微生物分泌的胞外蛋白水解酶将蛋白质分解之后才能被利用。在黄豆饼粉、花生饼粉里所含的氮则主要是以蛋白质的形式存在,这种蛋白氮必须通过水解之后降解成胨、肽、氨基酸等才能被机体利用,这种氮源叫迟效氮源。 而无机氮源或以蛋白质降解产物形式存在的有机氮源叫做速效氮源,例如硫酸铵中的氮以还原态氮形式存在,可以直接被菌体吸收利用,蛋白质的降解产物特别是氨基酸直接可以通过转氨作用等方式被机体利用。 速效氮源,通常是有利于机体的生长,迟效氮源有利于代谢产物的形成。在工业发酵过程中,往往是将速效氮源与迟效氮源按一定的比例制成混合氮源加到培养基里,以控制微生物的生长时期与代谢产物形成期的长短,达到提高产量的目的。 速效氮源,通常是有利于机体的生长,迟效氮源有利于代谢产物的形成。在工业发酵过程中,往往是将速效氮源与迟效氮源按一定的比例制成混合氮源加到培养基里,以控制微生物的生长时期与代谢产物形成期的长短,达到提高产量的目的
3.无机盐(inorganic salt) 功能:1、构成细胞结构组分; 2、作为酶组分或活化剂; 3、参与能量传递或提供能源; 大量元素:P、S、K、Ca 、 Mg、 Na、Fe (微生物生长所需浓度在10-3~10-4mol/L) 微量元素:Cu、Zn、Mn、Mo、Co (微生物生长所需浓度在10-6~10-8mol/L) 一般微生物生长所需要的无机盐有:硫酸盐、磷酸盐、氯化物以及含有钠、钾、镁、铁等金属元素的化合物。 一般微生物生长所需要的无机盐有:硫酸盐、磷酸盐、氯化物以及含有钠、钾、镁、铁等金属元素的化合物。 功能:1、构成细胞结构组分; 2、作为酶组分或活化剂; 3、参与能量传递或提供能源; 4、维持结构稳定性; 5、调节渗透压。
无机盐的生理功能: 细胞成分 一般功能 维持渗透压 生理调节物质 酶的激活剂 大量 pH的稳定 元素 特殊功能 微量 一般功能 特殊功能 酶的激活剂(Cu2+、Mn2+、Zn2 + ) 特殊分子结构成分(Co、Mo等) 维持渗透压 生理调节物质 酶的激活剂 pH的稳定 自养菌的能源(S、Fe2+、NH4+、NO2-) 氢受体(NO3-、SO42-) 细胞成分
4.生长因子(growth factor): 定义:是一类对微生物正常生活所不可缺少而需要量又不大,但微生物自身不能合成,或合成量不足以满足机体生长需要的有机营养物质。 类别:嘧啶和嘌呤;氨基酸;维生素类 功能:构成酶的辅酶、辅基参与新陈代谢 微 生 物 生长因子 需要量(ml-1) III型肺炎链球菌(Streptococcus pneumoniae) 胆碱 6ug 金黄色葡萄球菌(Staphylococcus aureus) 硫胺素 0.5ng 白喉棒杆菌(Cornebacterium diphtherriae) B-丙氨酸 1.5ug 破伤风梭状芽孢杆菌(Clostridium tetani) 尿嘧啶 0-4ug 肠膜状串珠菌(Leuconostoc mesenteroides) 吡哆醛 0.025ug Growth Factors This simplified scheme for use of carbon, either organic carbon or CO2, ignores the possibility that an organism, whether it is an autotroph or a heterotroph, may require small amounts of certain organic compounds for growth because they are essential substances that the organism is unable to synthesize from available nutrients. Such compounds are called growth factors. Growth factors are required in small amounts by cells because they fulfill specific roles in biosynthesis. The need for a growth factor results from either a blocked or missing metabolic pathway in the cells. Growth factors are organized into three categories. 1. purines and pyrimidines: required for synthesis of nucleic acids (DNA and RNA) 2. amino acids: required for the synthesis of proteins 3. vitamins: needed as coenzymes and functional groups of certain enzymes Some bacteria (e.g E. coli) do not require any growth factors: they can synthesize all essential purines, pyrimidines, amino acids and vitamins, starting with their carbon source, as part of their own intermediary metabolism. Certain other bacteria (e.g. Lactobacillus) require purines, pyrimidines, vitamins and several amino acids in order to grow. These compounds must be added in advance to culture media that are used to grow these bacteria. The growth factors are not metabolized directly as sources of carbon or energy, rather they are assimilated by cells to fulfill their specific role in metabolism. Mutant strains of bacteria that require some growth factor not needed by the wild type (parent) strain are referred to as auxotrophs. Thus, a strain of E. coli that requires the amino acid tryptophan in order to grow would be called a tryptophan auxotroph and would be designated E. colitrp-. Some vitamins that are frequently required by certain bacteria as growth factors are listed in Table 3. The function(s) of these vitamins in essential enzymatic reactions gives a clue why, if the cell cannot make the vitamin, it must be provided exogenously in order for growth to occur. 有些异养型微生物由于失去了(或从未有过)合成一种或多种组成细胞所必需的有机化合物的能力,因此,必须由外源提供这些有机化合物才能生长,将这些物质统称为生长因子,其中包括:维生素、氨基酸、嘌呤和嘧啶及其衍生物、甾醇、 胺类、脂肪酸等等。 种类:维生素、碱基、卟啉及其衍生物、甾醇、胺类、C4~C6的分支或直链脂肪酸、氨基酸
5.水 ◆水在细胞中有两种存在形式: 结合水和游离水. ◆不同细胞及不同细胞结构中游离水的含量有较大差别: 几种生物的 游离水含量 人体:~60% 海蛰:~96% 微生物 孢子 营养体 霉菌孢子:~39% 细菌芽孢: 皮层:~70% 核心:极低 细菌:~80% 酵母:~75% 霉菌:~85%
水的生理功能主要有: ①溶剂与运输介质的作用; ②参与细胞内化学反应; ③维持蛋白质等生物大分子稳定的天然构象;
(三) 培养基(medium) 定义:根据微生物生长、繁殖或产生代谢产物对营养物质的需要而由人工配制的营养基质(混合养料)。 特点:任何培养基都应具备微生物所需要的五大营养要素,且应比例适当。一旦配成必须立即灭菌。 ★广义上说,凡是支持微生物生长繁殖的介质或材料均可作为微生物的培养基。 ★培养基是微生物学尤其是工业微生物学研究的重要内容。 Culture Media for the Growth of Bacteria For any bacterium to be propagated for any purpose it is necessary to provide the appropriate biochemical and biophysical environment. The biochemical (nutritional) environment is made available as a culture medium, and depending upon the special needs of particular bacteria (as well as particular investigators) a large variety and types of culture media have been developed with different purposes and uses. Culture media are employed in the isolation and maintenance of pure cultures of bacteria and are also used for identification of bacteria according to their biochemical and physiological properties. The manner in which bacteria are cultivated, and the purpose of culture media, vary widely. Liquid media are used for growth of pure batch cultures while solidified media are used widely for the isolation of pure cultures, for estimating viable bacterial populations, and a variety of other purposes. The usual gelling agent for solid or semisolid medium is agar, a hydrocolloid derived from red algae. Agar is used because of its unique physical properties (it melts at 100 degrees and remains liquid until cooled to 40 degrees, the temperature at which it gels) and because it cannot be metabolized by most bacteria. Hence as a medium component it is relatively inert; it simply holds (gels) nutrients that are in aquaeous solution. 用途:促使微生物生长;积累代谢产物;分离微生物菌种;鉴定微生物种类;微生物细胞计数;菌种保藏;制备微生物制品等。
1.培养基的类型及其应用 ★(3)按用途划分 ★(1) 按成分来源 ①天然培养基;②合成(组合)培养基;③半组合培养基: ★(2) 按制备后培养基外观的物理状态来 ① 固体培养基;②半固体培养基;③液体培养基 ★(3)按用途划分 ①基础培养基;②加富培养基;③选择培养基;④鉴别培养基
①细菌培养基;②放线菌培养基;③霉菌培养基 ★(5) 根据培养目的来分 ①种子培养基———获得大量优质种子。 ②发酵培养基——用于生产。 ★(4) 根据所培养微生物的微生物类群来分 ①细菌培养基;②放线菌培养基;③霉菌培养基 ★(5) 根据培养目的来分 ①种子培养基———获得大量优质种子。 ②发酵培养基——用于生产。 ★(6) 其他类 活细胞、动植物组织等 Types of Culture Media Culture media may be classified into several categories depending on their composition or use. A chemically-defined (synthetic) medium (Table 4a and 4b) is one in which the exact chemical composition is known. A complex (undefined) medium (Table 5a and 5b) is one in which the exact chemical constitution of the medium is not known. Defined media are usually composed of pure biochemicals off the shelf; complex media usually contain complex materials of biological origin such as blood or milk or yeast extract or beef extract, the exact chemical composition of which is obviously undetermined. A defined medium is a minimal medium (Table4a) if it provides only the exact nutrients (including any growth factors) needed by the organism for growth. The use of defined minimal media requires the investigator to know the exact nutritional requirements of the organisms in question. Chemically-defined media are of value in studying the minimal nutritional requirements of microorganisms, for enrichment cultures, and for a wide variety of physiological studies. Complex media usually provide the full range of growth factors that may be required by an organism so they may be more handily used to cultivate unknown bacteria or bacteria whose nutritional requirement are complex (i.e., organisms that require a lot of growth factors). Most pathogenic bacteria of animals, which have adapted themselves to growth in animal tissues, require complex media for their growth. Blood, serum and tissue extracts are frequently added to culture media for the cultivation of pathogens. Even so, for a few fastidious pathogens such as Treponema pallidum, the agent of syphilis, and Mycobacterium leprae, the cause of leprosy, artificial culture media and conditions have not been established. This fact thwarts the the ability to do basic research on these pathogens and the diseases that they cause. Other concepts employed in the construction of culture media are the principles of selection and enrichment. A selective medium is one which has a component(s) added to it which will inhibit or prevent the growth of certain types or species of bacteria and/or promote the growth of desired species. One can also adjust the physical conditions of a culture medium, such as pH and temperature, to render it selective for organisms that are able to grow under these certain conditions. A culture medium may also be a differential medium if allows the investigator to distinguish between different types of bacteria based on some observable trait in their pattern of growth on the medium. Thus a selective, differential medium for the isolation of Staphylococcus aureus, the most common bacterial pathogen of humans, contains a very high concentration of salt (which the staph will tolerate) that inhibits most other bacteria, mannitol as a source of fermentable sugar, and a pH indicator dye. From clinical specimens, only staph will grow. S. aureus is differentiated from S. epidermidis (a nonpathogenic component of the normal flora) on the basis of its ability to ferment mannitol. Mannitol-fermenting colonies (S. aureus)produce acid which reacts with the indicator dye forming a colored halo around the colonies; mannitol non-fermenters (S. epidermidis) use other non-fermentative substrates in the medium for growth and do not form a halo around their colonies. An enrichment medium employs a slightly different twist. An enrichment medium (Table 5a and 5b) contains some component that permits the growth of specific types or species of bacteria, usually because they alone can utilize the component from their environment. However, an enrichment medium may have selective features. An enrichment medium for nonsymbiotic nitrogen-fixing bacteria omits a source of added nitrogen to the medium. The medium is inoculated with a potential source of these bacteria (e.g. a soil sample) and incubated in the atmosphere wherein the only source of nitrogen available is N2. A selective enrichment medium (Table 5b) for growth of the extreme halophile (Halococcus) contains nearly 25 percent salt [NaCl], which is required by the extreme halophile and which inhibits the growth of all other procaryotes.
2、培养基的配制原则 (1)培养基组分应合适(目的明确) (2)营养物的浓度与比例应恰当(营养协调) (3)物理化学条件适宜(条件适宜) (4)根据培养目的选择原料及其来源(经济节约)
3、设计培养基的方法 1.生态模拟 2.查阅文献 3.实验比较
4:配置培养基时应注意的几个问题: 1)、沉淀 2)、pH发生变化 3)、褐色物质的形成
5:培养基的灭菌 高压蒸气灭菌 一般培养基: 1.05 Kg/cm2, 121.3℃, 15-30 min 含糖培养基: 过滤灭菌, 分别灭菌, 间歇灭菌的应用
6:器皿的灭菌及无菌室的消毒 器皿的灭菌: 干热空气: 160-170℃, 2 小时 无菌室的消毒: 紫外光 化学药物熏蒸(苯酚;高锰酸钾+甲醛)
二 微生物的营养类型 碳素来源 光能营养型 能量来源 化能营养型 根据碳源、能源及电子供体性质的不同,可将微生物分为: 二 微生物的营养类型 根据碳源、能源及电子供体性质的不同,可将微生物分为: 异养型生物:大部分细菌及全部霉菌、酵母 自养型生物:藻类、小部分细菌 碳素来源 能量来源 光能营养型 化能营养型
(一)光能无机自养型(光能自养型) 碳源:以CO2为主要唯一或主要碳源; 供氢体或电子供体:无机物; 能量:光能; 例子:蓝细菌。
碳源:有机物,也可利用CO2为主要或唯一的碳源; 能源:光能; 供氢体或电子供体:有机物; (二)光能有机异养型(光能异养型) 碳源:有机物,也可利用CO2为主要或唯一的碳源; 能源:光能; 供氢体或电子供体:有机物; 例子:红螺菌。
(三)化能无机自养型(化能自养型) 能量:无机物氧化过程中放出的化学能; 碳源:CO2或碳酸盐为唯一或主要碳源, 电子供体:H2、H2S、Fe2+、NH3或NO2-等 例子:硝化菌。 化能无机自养型只存在于微生物中 物质循环起重要作用 专性好氧菌
(四).化能有机异养型(化能异养型) 能量:有机物氧化; 碳源:有机化合物; 电子供体:无机物或有机物; 微生物最普遍的代谢方式; 所有致病微生物均为化能有机异养型
不同营养类型之间的界限并非绝对! 微生物营养类型的可变性无疑有利于提高其对环境条件变化的适应能力 例如紫色非硫细菌(purple nonsulphur bacteria): 没有有机物时,同化CO2, 为自养型微生物; 有机物存在时,利用有机物进行生长,为异养型微生物; 光照和厌氧条件下,利用光能生长,为光能营养型微生物; 黑暗与好氧条件下,依靠有机物氧化产生的化学能生长,为化能营养型微生物 微生物营养类型的可变性无疑有利于提高其对环境条件变化的适应能力
三、营养物质的摄取 微生物从外界摄取营养物质的方式随微生物类群和营养物质种类而异,可归纳为吞噬和渗透吸收两种类型。 原生动物:吞噬作用、胞饮作用 细菌、真菌和藻类:通过细胞质膜吸收
三、营养物质的摄取 (一)影响营养物质透过细胞膜的因素: ①微生物细胞的透过屏障(荚膜、细胞壁、原生质膜等) ②营养物质本身的性质(相对分子量、溶解性、电负性等; ③微生物所处的环境(温度、PH等)
(二)营养物质的运输机制 是否消耗能量 是否需要载体 是否发生被吸收物的化学变化 。。。。。。。 单纯扩散 促进扩散 主动运输 基团转位
被吸收物质依靠其在细胞内外的浓度梯度为动力,从浓度高的地区向浓度低的胞内扩散的过程。 (1)、单纯扩散(被动扩散、自由扩散) 被吸收物质依靠其在细胞内外的浓度梯度为动力,从浓度高的地区向浓度低的胞内扩散的过程。 胞外 胞膜 胞内 S S S S S S S S S S S S S S S S S S S S S S S S S S
①由高浓度的胞外环境向低浓度的胞内进行扩散。 (1).单纯扩散 ①由高浓度的胞外环境向低浓度的胞内进行扩散。 ②物质在扩散过程中没有发生任何反应; 特点 ③不消耗能量;不能逆浓度运输; ④运输速率与膜内外物质的浓度差成正比 水、一些气体(O2、CO2)及某些水溶性物质(乙醇等)和脂溶性物质、某些离子(大肠杆菌吸收钠离子)可通过自由扩散进出细胞
(1)、单纯扩散 营养物质单纯扩散能力的影响因素: a. 吸收营养物质的分子大小 b. 溶解性(脂溶性或水溶性) c. 极性大小 d. 膜外pH e. 温度。
(2).促进扩散(被动扩散) ①不消耗能量 ②参与运输的物质本身的分子结构不发生变化 ③不能进行逆浓度运输 ④运输速率与膜内外物质的浓度差成正比 ⑤需要载体参与
通过促进扩散进入细胞的营养物质主要有氨基酸、单糖、维生素及无机盐等。
(3).主动运输 广泛存在于微生物中的一种主要的物质运输方式。 特点:消耗能量; 逆浓度运输。
(4).基团移位 特点: 逆浓度梯度运输; 需要能量; 需要特异性载体蛋白; 被转运的物质改变了化学结构 运送物质: 葡萄糖、果糖、甘露糖、核甘酸、丁酸和腺嘌呤等。 例子:磷酸烯醇式丙酮酸--磷酸己糖转移酶运输系统(PTS) 主要存在于厌氧型和兼性厌氧型细胞中。
(4).基团移位 磷酸烯醇式丙酮酸--磷酸己糖转移酶运输系统(PTS) ①.热稳定载体蛋白(HPr)激活(HPr被PEP磷酸化) 细胞内高能化合物磷酸烯醇式丙酮酸(PEP)的磷酸基团把HPr激活: HPr是一种热稳定的低分子量可溶蛋白,结合在细胞质膜上,具有高能磷酸载体的作用。酶Ⅰ是一种可溶性蛋白,分布于细胞质内。 ②.糖被磷酸化后进入质膜内: 膜外环境中的糖先与外膜表面的酶II c结合,再转运至内膜表面。这时,糖被P-HPr上的磷酸激活,依次通过酶Ⅱa Ⅱb作用将磷酸-糖释放到细胞内。酶Ⅱa 为细胞质蛋白,无底物特异性。酶Ⅱb 、II c是结合于细胞膜上的蛋白,它对底物有特异性选择作用。细胞膜上可诱导出一系列与底物分子相适应的酶Ⅱb、c 大肠杆菌磷酸转移酶体系与葡萄糖的运输
几种主要营养物质的吸收 1、糖: 促进扩散、基团转位、主动运输。 2、肽与氨基酸: 主动运输(主要方式)、促进扩散(次要方式) 3、离子:
四种运送营养物质方式及比较: