第十七章 因素分析 Factor Analysis 第十七章 因素分析.

Slides:



Advertisements
Similar presentations
會計學 Chapter 1 基本概念 1-2 基本概念 第一節 單式簿記 第二節 會計學的定義與功用 第三節 會計學術與會計人員 第四節 企業組織 第五節 會計學基本第五節 會計學基本慣例 第六節 會計方程式 第七節 財務報表.
Advertisements

Chapter 5 教育發展與職業選擇. 1. 認識高職學生的生涯進路。 2. 了解個人特質與職業屬性之 間的關係。 3. 認識打工安全與勞動權益。
传媒学生应该如何度 过四年大学生活?. 进入大学一个多月了,用一个词形容大 学生活 自卑感 不适应 空虚感 被动感 孤独感 失望感 一、大学新生不适应大学生活的表现:
應收帳款承購業務 FACTORING 台灣銀行製作.
慢性病防治與運動 你今天運動了嗎?.
See You T o r o m r w o ——BY 胡琼鸯 林岚.
小 王 子 組別:第五組 班級:財金二甲 組員:A 林安潔 A 陳思羽 A 許雅涵
第九章 会计设置及机构.
感觉器.
统 计 学 (第三版) 2008 作者 贾俊平 统计学.
因素分析方法的整合 ---- 结构效度的一种计算方法.
11-1 保險業之定義 11-2 保險業之設立 11-3 保險業之組織 11-4 保險業之營業範圍
張偉豪 三星統計服務有限公司 執行長 Amos 亞洲一哥
实证 作业:语言调查 赵万林 哲社学院 学号:
上海体育职业学院 祁社生 一、重视体育科研在提高竞技运动训练水平中的意义和作用
学党章党规、学系列讲话,做合格党员 学习教育
16PF测验.
第三章 创业者的性格测评——16PF测验 授课教师:赵荔.
9-1 火災保險 9-2 海上保險 9-3 陸空保險 9-4 責任保險 9-5 保證保險 9-6 其他財產保險
詹婉華 台北縣新店市中正國民小學 呂玉琴 國立台北師範學院數學教育學系
第二章 因素分析 陳順宇 教授 成功大學統計系.
中信信诚-淮安项目.
槍砲病菌與鋼鐵 第三組.
99年成語200題庫(21-40).
導覽解說與環境教育 CHAPTER 3 解說員.
大家都来关注国家安全 南京市江宁中学 傅德柱.
財務報表的內容 四種報表格式 財務報表的補充說明 會計師簽證的重要性 合併報表 財務報表分析 Chapter 2 財務報表的內容.
老師 製作 法律與生活.
第十七章休閒農業之經營策略與成功之道 17 Chapter.
Chapter 2 勞工安全衛生法.
多變量分析 Multivariant Analysis
统计学Statistics 主讲人:商学院 刘后平 教授
Structural Equation Modeling
多变的天气 高区一中 王永波
風險分析與財務結構 瞭解風險的定義與種類 衡量企業風險與財務風險 影響企業風險的因素 影響財務風險的因素 以現金流量衡量企業長期的財務狀況
项目申报及投资推进工作实务 更多模板、视频教程: 兰溪市发展和改革局 2013年9月 1.
第六节 脑和脊髓的传导通路.
國際行銷管理 林 建 煌 著.
第一節 知覺 第二節 認知 第三節 學習 第四節 創造力
汽车营销-车辆展示与介绍 皖江职教中心学校 李 芳.
传媒学院2013年度团委工作 总结分析报告
CHAPTER 2 綜合所得稅之架構.
1.問卷調查研究設計簡介 2.問卷資料分析~項目分析與信效度檢驗 3.問卷資料分析~因素分析 4.因果關係分析~結構方程模式分析
結構方程模式 結構方程模式由測量模型(measurement model)及結構模型(structural model)所組成。
項目分析與探索式因素分析 李茂能, 2007,成大 Fred Li, 2007.
第12章 因素分析  本章的學習主題  1. 因素分析的主要概念及目的 2. 主成份分析與一般因素分析之差異 3. 因素分析轉軸的概念
因素分析 10.1 探索性因素分析 10.2 在SPSS中使用探索性因素分析的範例 10.3 分析結果 10.4 因素命名及信度分析
第12章 因素分析  本章的學習主題  1. 因素分析的主要概念及目的 2. 主成份分析與一般因素分析之差異 3. 因素分析轉軸的概念 4. 決定因素萃取的個數 5. 如何對因素作命名 6. 因素得點的作用及計算.
衛生署公佈台灣地區約有5000人是屬單腳肢體殘障。已知台灣地區約有2,300萬人口。求台灣地區人民的平均腳數?
第六章 因子分分析 §6.1 因子分析的基本理论 §6.2 因子载荷的求解 §6.3 因子分析的步骤与逻辑框图 §6.4 因子分析的上机实现
Test for difference among the means: t Test
第9章 因子分析 factor analysis
楊志強 博士 多變量分析在測驗暨量表編製之應用 楊志強 博士
主講人 陳陸輝 特聘研究員兼主任 政治大學 選舉研究中心
交叉表格分析 庄文忠 副教授 世新大学行政管理学系 SPSS之应用(庄文忠副教授) 2011/7/13.
介绍: 1、主成分分析与因子分析的概念 2、主成分分析与因子分析的过程
老師 製作 休閒農場.
第二章 主成分分析 §2.1 主成分分析的基本思想与理论 §2.2 主成分分析的上机实现 2019/4/23 1
心理學—日常生活中的應用 人際溝通.
§6.7联立方程计量经济学模型的系统估计方法 the Systems Estimation Methods
Factor Analysis 因素分析 陳思先.
聚合型第一種:隱沒帶、島弧 例子:臺灣東方的琉球海溝、南美洲智利海溝. 聚合型第一種:隱沒帶、島弧 例子:臺灣東方的琉球海溝、南美洲智利海溝.
財務預測 財務預測的用途 法令相關規定 預測的基本認知 預測的方法 製作預測性報表 財務報表分析 Chapter 16 財務預測.
Multiple Regression: Estimation and Hypothesis Testing
「Love症候群」身心靈無痛治療法.
自慢 社長的成長學習筆記 何飛鵬.
土耳其古文明之旅(四) 卡巴德基亞 (Cappadocia) 奇石區 梁宜娟.
Chapter 1 函數 1.1 函數的定義 1.2 基本函數 1.3 函數的運算 1.4 函數的圖形.
團體工作的倫理議題 CHAPTER 12. 團體工作的倫理議題 CHAPTER 12 團體工作的倫理議題 1.如果我有資格執行個別治療,那麼我也可以執行團體治療。 2.仔細而審慎地篩選團體成員,較符合專業倫理要求。 3.在團體治療開始前,讓成員能先有準備以便從團體中獲得最大利益,是非常重要的。
Chapter1 大師的視界,見證歷史的腳步
Presentation transcript:

第十七章 因素分析 Factor Analysis 第十七章 因素分析

課程目標 瞭解因素分析的功能與目的 瞭解因素分析的操作程序 瞭解因素分析的萃取方法 瞭解因素分析的因素個數決定程序 瞭解因素分析各種量數的原理 熟習因素分析的SPSS應用 第十七章 因素分析

因素分析運算過程所涉及的各種矩陣 第一節 第十七章 因素分析

自尊量表前六題的四種矩陣結果 第一節 第十七章 因素分析

因素分析的目的與問題 因素分析的主要目的在將繁多的變項縮減為少數的因素,找出變項背後的結構,涉及下列問題的探討 因素數目的決定 因素的內容與性質 因素的重要性 理論的檢驗 因素分數的估計 第一節 第十七章 因素分析

因素分析的限制 理論層次的問題 因素的抽取必須具有相當的理論與邏輯基礎。重要的因素必須被涵蓋,無關的測量應該被排除 因素背後應有特定且穩定的測量變項, 稱為marker variable,是用來定義因素的重要變項 因素內的複雜性需被仔細的評估。反應在與多個因素有關係的觀察變項 樣本的選取需能涵蓋測量變項的變異性 樣本間的比較亦能反應因素的特性 第一節 第十七章 因素分析

因素分析的限制 實務層次的問題 因素分析受到相關係數的特性所影響,任何影響相關係數的原因都可能干擾因素分析 樣本數、遺漏值、常態性、線性關係、偏離值 多元共線性(multicollinearity)與單一性(singularity),極端的共線性與單一性對於因素分析具有影響 相關係數的大小:如果觀察矩陣中相關係數均小於.3,抽取因素能力低,可能需放棄使用因素分析 因素分析的偏離值:當某測量變項不被因素所解釋時。當僅有兩個變項所決定的因素,可能是一種不穩定的因素。 第一節 第十七章 因素分析

不同的萃取方法一 主成分法(Principal components) 目的在使每一個成分能夠代表最大的觀察變異量 第一個主成分為觀察變項的線性整合,能夠反應最大的變異量,依序發展各主成分 可以得到最大的解釋變異量 主要因素法(principal factors) 以共同性為分析的對象 因素的抽取以疊代程序來進行,起始值為SMC(squared multiple correlations),反覆帶入共同性直到無改善 能夠產生最理想的重製矩陣 映像因素萃取(image factor extraction) 各觀察變項的變異量為其他變項的投射。每一個變項的映像分數係以多元迴歸的方法來計算,映像分數的共變矩陣被進行PCA 類似PCA,能夠產生單一的數學解,對角線與FA相同,為共同性 因素負荷量不是相關係數,而是變項與因素的共變 第三節 第十七章 因素分析

不同的萃取方法二 最大概似因素萃取(maximum likelihood factor extraction) 以因素負荷量的母數估計數為主要目的 計算樣本求得之觀察矩陣能夠反應母體的最大機率之負荷量 因素可進行顯著性考驗,適用於驗證性分析 也即是求取變項與因素間的最大典型相關 無加權最小平方法(unweighted least squares factoring) 求取觀察與重製矩陣的殘差的最小平方值 只有非對角線上的數據被納入分析 共同性是分析完成之後才進行計算 一般加權最小平方法(generalized weighted least squares factoring) 在無加權平方法下,增加權數的考量(以共同性加權) 有較大的共同變異的變項被較大的加權 Alpha法(alpha factoring) 處理共同因素的信度,提高因素的類化性(generalizability) 共同性的估計是在使因素的alpha信度達到最大 第三節 第十七章 因素分析

因素數目判斷原則 一般原則:解釋變異量 因素數目判斷方法 因素越多,解釋變異量越大 因素越多,簡效性越低(模式越複雜) 特徵值 大於1(表示大於1.00的原始觀察變異量) 因素數目合理範圍為變項數除以3至除以5之間 陡坡檢定Scree test (Cattell, 1966) 特徵值明顯出現變化時為合理數目 殘差分析 殘差類似於各變項間的相關在移除了因素的影響後的淨相關 檢驗不同因素數目下,殘差矩陣中的數值,高於.05或.10以上者過多,表示可能在其他因素 第三節 第十七章 因素分析

因素數目判斷原則 因素負荷量檢驗 單一觀察變項的因素並不恰當 二個觀察變項的因素在兩變項相關高(r>.7),與其他變項相關低時,為合理。 顯著性考驗 驗證性因素分析提供因素的顯著性考驗 Bartlett檢驗考驗全部因素的顯著性意義 平行分析(parallel analysis) 利用蒙地卡羅模擬技術找出隨機特徵值 原始與隨機特徵值的比較,決定哪幾個因素是應該萃取 研究上的考量 探索性的目的,想要瞭解因素的結構時,邊緣強度的因素可以保留,以瞭解其性質 當研究者需要穩定的因素進行研究時,保留信度高的因素即可 第三節 第十七章 因素分析

特徵向量與特徵值 相關矩陣中的對角線代表變項的標準化的變異量(1.00) 因素分析經由因素的萃取對於觀察變項相關矩陣進行萃取後,轉換成為特徵值(L) L=V’RV V’V=I V稱為特徵向量 上式可以轉換為R=AA’,A稱為因素負荷矩陣 特徵值矩陣L 第三節 第十七章 因素分析

因素負荷矩陣 前式可以轉換為R=AA’,A稱為因素負荷矩陣 第三節 第十七章 因素分析

因素負荷量,共同性與解釋變異量 第三節 第十七章 因素分析

因素的解釋與命名 因素負荷量的判斷 不同轉軸法下的考量 .71(50%)優秀 .63(40%)非常好 .55(30%)好 .45(20%)普通 .32(10%)不好 .32以下:不及格 不同轉軸法下的考量 直交轉軸使用轉軸後矩陣 斜交轉軸使用型態矩陣,以獲悉因素的意義(結構矩陣中的係數被因素間的相關擴張,導致高估) 第三節 第十七章 因素分析

Rotation 轉軸 轉軸的時機 依目的:得到最佳的結構,或保留因素的原始面貌 利用因素散佈圖協助判斷:觀察變項應在各軸上:接近各軸,遠離原點,形成群落 Orthogonal rotation(直交轉軸) Varimax:使負荷量的變異數在因素內最大( Г =1) Quartimax :使負荷量的變異數在變項內最大( Г =0) Equamax :綜合前兩者,使負荷量的變異數在因素內與變項內同時最大( Г =.5) Г(gamma)指標:表示簡化的程度:0表變項最簡化,1表因素最簡化,.5表兩者各半 第三節 第十七章 因素分析

直交轉軸 Varimax法:將因素負荷量的變異數最大化 將高相關更高,低相關更低 第三節 第十七章 因素分析

直交轉軸概念圖 轉軸前 轉軸後 第三節 第十七章 因素分析

斜交轉軸 Oblique rotation(斜交轉軸) 允許因素間具有相關之轉軸 因素間最大的相關由δ(delta)決定, 負的δ越小,表示月接近直交, δ=-4為直交, δ接近1時,因素間的相關可能最高 Direct oblimin:使因素負荷量的差積(cross-products)最小化 Direct quartimin:使型態矩陣中的負荷量平方的差積(cross-products)最小化 Orthoblique:使用quartimax算式將因素負荷量重新量尺化(rescaled)以產生直交的結果,因此最後的結果保有斜交的性質 Promax:將直交轉軸(varimax)的結果再進行有相關的斜交轉軸。因素負荷量取2,4,6次方以產生接近0但不為零的值,藉以找出因素間的相關,但仍保有最簡化因素的特性 第三節 第十七章 因素分析

斜交轉軸後圖示與參數比較 第三節 第十七章 因素分析

Factor scores 因素分數 因素分數的產生由因素負荷量為基礎,透過迴歸分析原理來獲得一組因素分數係數,即可計算因素分數 因素分數係數為因素負荷量與相關係數反矩陣的乘積 因素分數為原始變項分數轉換為Z分數後乘以因素分數係數而得 各變項由因素得到的預測分數公式如下 第三節 第十七章 因素分析

Chapter 17 is done here.. See you later! Time for rest Chapter 17 is done here.. See you later! 第十七章 因素分析