单样本检验.

Slides:



Advertisements
Similar presentations
第一章 、随机事件与概率 1.1 、随机事件 1.2 、随机事件的概率 1.3 、随机事件概率的计算 1.4 、伯努利概型.
Advertisements

四川财经职业学院会计一系会计综合实训 目录 情境 1.1 企业认知 情境 1.3 日常经济业务核算 情境 1.4 产品成本核算 情境 1.5 编制报表前准备工作 情境 1.6 期末会计报表的编制 情境 1.2 建账.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
主编:邓萌 【点按任意键进入】 【第六单元】 教育口语. 幼儿教师教育口 语概论 模块一 幼儿教师教育口语 分类训练 模块二 适应不同对象的教 育口语 模块三 《幼儿教师口语》编写组.
第一組 加減法 思澄、博軒、暐翔、寒菱. 大綱 1. 加減法本質 2. 迷思概念 3. 一 ~ 七冊分析 4. 教材特色.
海南医学院附 院妇产科教室 华少平 妊娠合并心脏病  概述  妊娠、分娩对心脏病的影响  心脏病对妊娠、分娩的影响  妊娠合病心脏病的种类  妊娠合并心脏病对胎儿的影响  诊断  防治.
植树节的由来 植树节的意义 各国的植树节 纪念中山先生 植树节的由来 历史发展到今天, “ 植树造林,绿化祖国 ” 的热潮漫卷 了中华大地。从沿海到内地,从城市到乡村,涌现了多少 造林模范,留下了多少感人的故事。婴儿出世,父母栽一 棵小白怕,盼望孩子和小树一样浴光吮露,茁壮成长;男 女成婚,新人双双植一株嫩柳,象征家庭美满,幸福久长;
客户协议书 填写样本和说明 河南省郑州市金水路 299 号浦发国际金融中 心 13 层 吉林钰鸿国创贵金属经营有 限公司.
浙江省县级公立医院改革与剖析 马 进 上海交通大学公共卫生学院
第二章 环境.
教师招聘考试 政策解读 讲师:卢建鹏
了解语文课程的基本理念,把握语文素养的构成要素。 把握语文教育的特点,特别是开放而有活力的语文课程的特点。
北台小学 构建和谐师生关系 做幸福教师 2012—2013上职工大会.
福榮街官立小學 我家孩子上小一.
第2期技職教育再造方案(草案) 教育部 101年12月12日 1 1.
企业员工心态管理培训 企业员工心态管理培训讲师:谭小琥.
历史人物的研究 ----曾国藩 组员: 乔立蓉 杜曜芳 杨慧 组长:马学思 杜志丹 史敦慧 王晶.
教育部高职高专英语类专业教学指导委员会 刘黛琳 山东 • 二○一一年八月
淡雅诗韵 七(12)班 第二组 蔡聿桐.
7.1 假设检验 1. 假设检验的基本原理 2. 假设检验的相关概念 3. 假设检验的一般步骤 4. 典型例题 5. 小结.
第七届全国英语专业院长/系主任高级论坛 汇报材料
小數怕長計, 高糖飲品要節制 瑪麗醫院營養師 張桂嫦.
第十七章 分类资料的统计推断.
制冷和空调设备运用与维修专业 全日制2+1中等职业技术专业.
会计信息分析与运用 —浙江古越龙山酒股份有限公司财务分析 组员:2006级工商企业管理专业 金国芳 叶乐慧 魏观红 徐挺挺 虞琴琴.
第六章 人体生命活动的调节 人体对外界环境的感知.
二项分布.
圆的一般方程 (x-a)2 +(y-b)2=r2 x2+y2+Dx+Ey+F=0 Ax2+Bxy+Cy2+Dx+Ey+ F=0.
导游资格证考试概要.
第四章 概率、正态分布、常用统计分布.
6.6 单侧置信限 1、问题的引入 2、基本概念 3、典型例题 4、小结.
易學基礎教程 國文系99 王隆運. 易學基礎教程 國文系99 王隆運.
完全随机设计多样本资料秩和检验.
第 8 章 假设检验 作者:中国人民大学统计学院 贾俊平 PowerPoint 统计学.
计数资料的统计推断 (2 学时) 吴成秋 公共卫生学院预防医学系
Distribution and Application of Discrete Variable
黑色产业链行情分析及展望 浙商期货研究中心 同创,同享,同成长。.
第三篇 医学统计学方法. 第三篇 医学统计学方法 医学统计学方法 实习2 主讲人 陶育纯 医学统计学方法 实习2 主讲人 陶育纯 流行病与卫生统计学教研室
本讲义可在网址 或 ftp://math.shekou.com 下载
第四章 抽样误差与假设检验 要求: 掌握:均数的抽样误差与标准误,t分 布的特征,t界值表,总体均数可信区间及其与参考值范围的区别。
区间估计 Interval Estimation.
统计学期末复习
新形势下如何操作净水市场 疏龙林.
第6章 统计量及其抽样分布 统计量 关于分布的几个概念 由正态分布导出的几个重要分布 样本均值的分布与中心极限定理 样本比例的抽样分布
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
第十章 方差分析.
给孩子做一面明亮的镜子 给孩子做一面明亮的镜子.
常用概率分布 ---Poisson分布.
连续型随机变量及其概率密度 一、概率密度的概念与性质 二、常见连续型随机变量的分布 三、小结.
第七章 参数估计 7.3 参数的区间估计.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
抽样和抽样分布 基本计算 Sampling & Sampling distribution
概 率 统 计 主讲教师 叶宏 山东大学数学院.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
完全随机设计多组资料的比较 赵耐青 卫生统计教研室.
相关与回归 非确定关系 在宏观上存在关系,但并未精确到可以用函数关系来表达。青少年身高与年龄,体重与体表面积 非确定关系:
第一部分:概率 产生随机样本:对分布采样 均匀分布 其他分布 伪随机数 很多统计软件包中都有此工具 如在Matlab中:rand
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
第八章 假设检验 8.1 假设检验的基本概念.
第三节 随机区组设计的方差分析 随机区组设计资料的总平方和可以分解为三项: (10.10).
难点:连续变量函数分布与二维连续变量分布
第十五讲 区间估计 本次课讲完区间估计并开始讲授假设检验部分 下次课结束假设检验,并进行全书复习 本次课程后完成作业的后两部分
Sampling Error and Hypothesis Test
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
贝叶斯估计 Bayes Estimation
第五章 二项分布和Poisson 分布及其应用
假设检验.
Presentation transcript:

单样本检验

二项分布基本概念 二项分布 对于Bernoulli试验序列的n次试验,结局A出现的次数X的概率分布服从二项分布 二项分布指的是概率的分布 注意:二项分布是一个离散型分布

二项分布的两个参数 显然对于不同的n、不同的有不同的二项分布。它们是二项分布的两个参数。 若X服从二项分布,则记X~B(n, )。

二项分布的基本特征 二项分布的名称由来是因为计算公式中含有二项式的展开项 二项分布的均数和方差 μ=n  方差=n(1- )

二项分布的基本特征 当 =0.5时,图形对称;当 ≠0.5时,图形呈偏态,但随n的增大,图形逐渐对称。

样本率的抽样分布 对于大量重复随机抽样而言,样本率p围绕着总体率附近随机波动,样本量n的值越大,这种波动的幅度就越小。 当n充分大时,p的分布就近似于均数为,标准差为sqrt( (1- )/n)的正态分布。 一般的标准是n和n(1- )均大于5,且n>40 当样本情况接近此标准时,往往会进行校正 注意:上文所说的样本率p的标准差,为了区分阳性数x的标准差,亦称样本率的标准差为标准误。

总体率的区间估计 对一个总体参数都有点估计和区间估计,点估计直接使用样本统计量即可 区间估计:直接计算概率 在样本例数较小,且样本率接近1或0,即阳性事件发生率很高或很低时,可按照率的抽样分布规律确定总体率的可信区间,为方便应用,统计学家根据二项分布原理,编制了总体率95%和99%可信区间的百分率可信区间表

总体率的区间估计 区间估计:正态近似 当n较大, 和1- 均不太小时,样本率的抽样分布近似正态分布,因此可按正态近似法求总体率的1- 可信区间。 Stata计算 没有这么麻烦,使用cii命令即自动完成 例6.1 某疗法治疗某病28人,6人有效,求该疗法有效率的95%可信区间。 例6.2 某疗法治疗某病10人,7人有效,求该疗法有效率的95%可信区间。

样本率与已知总体率的比较 如前所述,当n较大, 和1- 均不太小时,样本率的抽样分布近似正态分布,可利用正态分布的原理作假设检验。 反之,则可使用二项分布自身的概率分布进行假设检验,这种方法被称为确切概率法

样本率与已知总体率的比较 例6.4 用常规疗法治疗流行性出血热的病死率为15%,现用某新法治疗50名患者,死亡6例,问新法治疗流行性出血热的病死率是否不等于常规疗法。 由于样本量较大,因此可以考虑采用正态近似法分析

样本率与已知总体率的比较 假设检验(正态近似法) H0:新法和常规疗法治疗流行性出血热的病死率相等,  = 0 设=0.05 检验统计量为 当H0成立时,统计量U近似服从标准正态分布。 即:若|U|>1.96 ,则拒绝H0。

样本率与已知总体率的比较 本例: |U|<1.96,不能拒绝H0,因此没有足够的增加证据可以推断新疗法的病死率与传统认疗法不同。 Stata 操作命令为:prtesti 50 6 0.15,count 结果与上述相同。

样本率与已知总体率的比较 样本量较小,需要使用确切概率计算来完成分析 显然,本次检验应当是双侧检验。 例6.5 已知A药物治疗幽门螺旋杆菌感染的治愈率为60%。现拟用B药物治疗。现用B药治疗幽门螺旋杆菌感染患者10人,其中9人治愈。问B药治疗幽门螺旋杆菌感染的治愈率是否不同于A药的治愈率。 样本量较小,需要使用确切概率计算来完成分析 显然,本次检验应当是双侧检验。

确切概率法的基本思想 假设检验可以理解为根据水平,把统计量可能的取值范围分为拒绝范围(亦称拒绝域)和不拒绝范围。如果统计量的取值落在拒绝范围内(即:P< ),则拒绝H0,反之不拒绝H0。 对于确切概率法也是相同的,根据水平,把可能的样本点范围分为拒绝范围和不拒绝范围,如果样本点X落在拒绝范围内,则拒绝H0,反之不拒绝H0。

确切概率法的基本思想 拒绝范围构成的(双侧检验)基本原则(以下是H0为真的假设下的概率): 属于拒绝范围内的任一可能样本点的概率小于非拒绝范围的任一可能样本点的概率; 拒绝范围内所有可能样本点的累积概率< ,并且对于非拒绝范围内的任一可能样本点加入拒绝范围,都将使其累积概率> 。 定义:记P=小于等于实际样本点概率的所有可能样本点概率之和。

确切概率法的基本思想 如果实际样本点在拒绝范围内,根据P值定义和拒绝范围构成的原则可知,P< ,可以拒绝H0。

样本率与已知总体率的比较 建立假设 H0:B药的幽门螺旋杆菌感染治愈率=60% H1:B药的幽门螺旋杆菌感染治愈率 60% 双侧检验=0.05 计算概率值 P=小于等于实际样本点概率的所有可能样本点概率之和 先计算样本点的概率

样本率与已知总体率的比较 假设H0为真的情况下,计算治愈人数的概率分布 也可以用Stata命令bitesti 10 9 0.6得到相同的结果。

样本率与已知总体率的比较 如果研究前已知道B药疗效不低于A药的信息,则此例研究问题可改为单侧检验 H0:=0.6 vs H1:>0.6 =0.05 可首先计算成立时总体中出现现有样本点X=9的概率 计算H1:方向更极端的情况。 P=P9+P10=0.0403108+0.0060466=0.0463574< 拒绝H0。

Thank You !