模糊与概率(二) 刘靳 2006.11.20.

Slides:



Advertisements
Similar presentations
四川财经职业学院会计一系会计综合实训 目录 情境 1.1 企业认知 情境 1.3 日常经济业务核算 情境 1.4 产品成本核算 情境 1.5 编制报表前准备工作 情境 1.6 期末会计报表的编制 情境 1.2 建账.
Advertisements

主编:邓萌 【点按任意键进入】 【第六单元】 教育口语. 幼儿教师教育口 语概论 模块一 幼儿教师教育口语 分类训练 模块二 适应不同对象的教 育口语 模块三 《幼儿教师口语》编写组.
第一組 加減法 思澄、博軒、暐翔、寒菱. 大綱 1. 加減法本質 2. 迷思概念 3. 一 ~ 七冊分析 4. 教材特色.
海南医学院附 院妇产科教室 华少平 妊娠合并心脏病  概述  妊娠、分娩对心脏病的影响  心脏病对妊娠、分娩的影响  妊娠合病心脏病的种类  妊娠合并心脏病对胎儿的影响  诊断  防治.
植树节的由来 植树节的意义 各国的植树节 纪念中山先生 植树节的由来 历史发展到今天, “ 植树造林,绿化祖国 ” 的热潮漫卷 了中华大地。从沿海到内地,从城市到乡村,涌现了多少 造林模范,留下了多少感人的故事。婴儿出世,父母栽一 棵小白怕,盼望孩子和小树一样浴光吮露,茁壮成长;男 女成婚,新人双双植一株嫩柳,象征家庭美满,幸福久长;
客户协议书 填写样本和说明 河南省郑州市金水路 299 号浦发国际金融中 心 13 层 吉林钰鸿国创贵金属经营有 限公司.
浙江省县级公立医院改革与剖析 马 进 上海交通大学公共卫生学院
第二章 环境.
教师招聘考试 政策解读 讲师:卢建鹏
了解语文课程的基本理念,把握语文素养的构成要素。 把握语文教育的特点,特别是开放而有活力的语文课程的特点。
北台小学 构建和谐师生关系 做幸福教师 2012—2013上职工大会.
福榮街官立小學 我家孩子上小一.
第2期技職教育再造方案(草案) 教育部 101年12月12日 1 1.
企业员工心态管理培训 企业员工心态管理培训讲师:谭小琥.
历史人物的研究 ----曾国藩 组员: 乔立蓉 杜曜芳 杨慧 组长:马学思 杜志丹 史敦慧 王晶.
教育部高职高专英语类专业教学指导委员会 刘黛琳 山东 • 二○一一年八月
淡雅诗韵 七(12)班 第二组 蔡聿桐.
第七届全国英语专业院长/系主任高级论坛 汇报材料
小數怕長計, 高糖飲品要節制 瑪麗醫院營養師 張桂嫦.
制冷和空调设备运用与维修专业 全日制2+1中等职业技术专业.
会计信息分析与运用 —浙江古越龙山酒股份有限公司财务分析 组员:2006级工商企业管理专业 金国芳 叶乐慧 魏观红 徐挺挺 虞琴琴.
第六章 人体生命活动的调节 人体对外界环境的感知.
芹菜 英语051班 9号 黄秋迎 概论:芹菜是常用蔬菜之一,既可热炒,又能凉拌,深受人们喜爱。近年来诸多研究表明,这是一种具有很好药用价值的植物。 别名:旱芹、样芹菜、药芹、香芹、蒲芹 。 芹菜属于花,芽及茎类。
2012年 学生党支部书记工作交流 大连理工大学 建工学部 孟秀英
1、什么是预算会计? 2、预算会计的组成体系? 3、预算会计的要素和会计等式? 4、预算会计的特点?
北京市职业技能鉴定管理中心试题管理科.
2014吉林市卫生局事业单位招聘153名工作人员公告解读
各類所得扣繳法令 與申報實務 財政部北區國稅局桃園分局 103年9月25日
初級游泳教學.
爱国卫生工作的持续发展 区爱卫办 俞贞龙.
第八章 数学活动 方程组图象解法和实际应用
本课内容提要 一、汇率的含义 二、汇率变化与币值的关系 三、汇率变化的影响. 本课内容提要 一、汇率的含义 二、汇率变化与币值的关系 三、汇率变化的影响.
散文鉴赏方法谈.
比亚迪集成创新模式探究 深圳大学2010届本科毕业论文答辩 姓名:卓华毅 专业:工商管理 学号: 指导老师:刘莉
如何撰写青年基金申请书 报 告 人: 吴 金 随.
点击输 入标题 点击输入说明性文字.
國際志工海外僑校服務 越南 國立臺中教育大學 2010年國際志工團隊.
痰 饮.
學分抵免原則及 學分抵免線上操作說明會.
教 学 查 房 黄宗海 南方医科大学第二临床医学院 外科学教研室.
评 建 工 作 安 排.
“十二五”国家科技计划经费管理改革培训 概预算申报与审批 国家科学技术部 2012年5月.
“十二五”国家科技计划经费管理改革培训 概预算申报与审批 国家科学技术部 2012年5月.
首都体育学院 武术与表演学院 张长念 太极拳技击运用之擒拿 首都体育学院 武术与表演学院 张长念
现行英语中考考试内容与形式的利与弊 黑龙江省教育学院 于 钢 2016, 07,黄山.
第5讲:比较安全学的创建 吴 超 教授 (O)
彰化縣西勢國小備課工作坊 新生入學的班級經營 主講:黃盈禎
重庆市西永组团K标准分区基本情况介绍.
西貢區歷史文化 清水灣 鍾礎營,楊柳鈞,林顥霖, 譚咏欣,陳昭龍.
所得稅扣繳法令與實務 財政部北區國稅局桃園分局 102年12月19日 1 1.
角 色 造 型 第四章 欧式卡通造型 主讲:李娜.
走进校园流行 高二15班政治组 指导老师:曾森治老师.
医院文化建设 广东省中医院 2011年3月26日.番禺.
案例:海底捞模式 ——把服务做到极致.
医疗法律法规培训 连云港市东辛农场医院 周卫平 二0一四年十二月.
史泰博出货检验员面试中·········
09英本2班 罗芬.
个人所得税 扣缴申报表填报讲解.
主講人:孫台義 教授 哈薩克大學國際關係學院 客座教授
土地增值税清算业务培训 主讲人:吴金娟 怀集地税.
实训报告 财务管理二班 第三小组 组长:董文芳 执笔人:王瑾 组员:汲伦 庞宁宁 姜美.
义务教育英语(7—9年级) 教学指导意见.
Http://
儿科护理 说课 李国琴.
資源中心辦理補救教學之推動重點 服務單位:國立新竹教育大學 演 講 者:林志成教授.
初中《思想品德》课程改革 回顾·现状·展望
歡迎委員 蒞臨指導 生態有機校園評鑑 簡報 石龜國小104學年度 石龜團隊: 校 長 高啟順 訓導組長 廖美智
(一) 第一单元 (45分钟 100分).
四、模糊集合的模糊程度——模糊熵 四、模糊集合的模糊程度——模糊熵
講題 :課程發展委員會的組織與運作機制 主講人:臺北市立明倫高中 教務主任王文珠.
Presentation transcript:

模糊与概率(二) 刘靳 2006.11.20

问题的提出 ◆如何表征模糊集合的模糊程度 模糊熵 ◆如何表征模糊集合间的包含关系 模糊包含度 ◆如何用模糊集合间的包含关系表征某个模糊集合的模糊程度 模糊熵—包含度定理

模糊集合的模糊程度—模糊熵 A的模糊熵E(A),在单位超立方体In中从0到1,其中顶点的熵为0,表明不模糊,中点的熵为1,是最大熵。从顶点到中点,熵逐渐增大。引出熵的比例形式:

模糊集合的模糊程度—模糊熵(续) 模糊熵定理: 模糊熵定理的几何图示。由对称性,完整模糊方形的四个点到各自的最近顶点、最远顶点的距离都相等。该定理正式宣告了“西方逻辑”的终止。( )

模糊集合间的包含关系—包含度定理 主导隶属度函数关系(dominated membership function relationship): 如果A=(.3 0 .7)和B=(.4 .7 .9),那么A就是B的一个模糊子集,但B不是A的模糊子集。显然,这种模糊包含度是非模糊的,它是非黑即白的,是二值定义下的子集性(Zadeh’s1965)。

模糊集合间的包含关系—包含度定理(续) 1.模糊子集的几何表示 B的所有模糊子集构成集合——模糊幂集F(2B),它构成了在单位超立方体中倚着原点的规则的超长方形,其边宽等于各隶属度值mB(xi) 。可以 用Lebesgue测度或体积V(B)来度量F(2B)的大小,其中,体积V(B)为隶属度值的乘积: 图7.7

模糊集合间的包含关系—包含度定理(续) 2.包含度定理: 在图7.7中,点A可以是长方形内的点,也可以不是。在长方形F(2B)外不同的点A是B的不同程度的子集。而上述二值定义下的子集性忽略了这一点。考虑到集合A属于F(2B)的不同程度,通过抽象隶属度函数来定义包含度: S(.,.)在[0,1]之间取值,其代表了多值的子集测度(包含度),是模糊理论中的基本的、标准的结构。

模糊集合间的包含关系—包含度定理(续) 度量S(.,.)的两种方法: (1)代数方法: 即失配法(fit-violation strategy) 假定X包含有100个元素:X={x1,…,x100}。而只有第一个元素违背了主导隶属度函数关系,使得mA(x1)>mB(x1)。直观上,我们认为A很大程度上是B的子集。可以估算,子集性为S(A,B)=0.99,并且,如果X包括1兆个元素,A几乎完全是B的子集了。可见失配的幅度mA(x1)-mB(x1)越大,失配的数目相对于模糊集A的大小越多,那么A就越不能算是B的子集,或者说,A就越象是B的超集。直观上有:

模糊集合间的包含关系—包含度定理(续) 失配数的计算: max(0,mA(x)-mB(x)) 归一化之后得到超集的最小度量: 包含度为:

模糊集合间的包含关系—包含度定理(续) 这种包含度满足主导隶属度函数关系,当 时,S(A,B)=1。如果S(A,B)=1,则分子被加数应都为0,因此主导隶属度函数关系都满足。反之,当且仅当B是空集时, S(A,B)=0。而空集本来就无法包含集合,无论是模糊集还是非模糊集。在这两种极端情况之间,包含度的大小为: 0 < S ( A, B ) < 1 考虑匹配矢量A = (.2 0 .4 .5)和B = (.7 .6 .3 .7)。A几乎是B的子集,但不完全是,因为 所以, 类似可得:

模糊集合间的包含关系—包含度定理(续) (2)几何方法: 在图7.7中, 集合A或是位于F(2B)内, 或是在外头。直觉上,当A接近F(2B)时, S(A,B)应接近于1,当A远离F(2B)时, S(A,B)应该减小。 那么A与F(2B)之间的距离 如何计算? 图7.7

模糊集合间的包含关系—包含度定理(续) 寻找B*(A位于F(2B)外): 通过F(2B)边线的直线延伸,将超立方体In分割成2n个超长方形。他们分为混合的或是纯的主值隶属度。非子集A1, A2 , A3, 分别位于不同的象限。通过F(2B)与A1, A3的范数距离,分别找到与西北和东南象的点A1, A3距离最近的点B1*和B3*。而离东北象限中的点A2距离最近的点B*就是B自身。由此可证得一般性勾股定理。且这种“正交”优化情况表明d(A,B)就是lp直角三角形的斜边。

模糊集合间的包含关系—包含度定理(续) 定义超集度为: d(A,F(2B))=d(A,B*) S(A,B)=1-d(A,B*)/n 为了保证其值在(0,1)之间变化,要进行归一化处理,该常数等于最大的单位立方体距离,l1情况下值为n: S(A,B)=1-d(A,B*)/n 这种度量存在的问题: 以B为中心的l1范数区域呈钻石形。A1和A2到F(2B)等距,但A1比A2离B更近。而同时,M(A1)>M(A2)。 可见,包含度依赖于基数M(A)。考虑归一化,进一步猜测:

模糊集合间的包含关系—包含度定理(续) 假定p=1,令 正交性表明: 设 其充要条件是没有失配现象发生,恒有 。 设 其充要条件是有失配现象 发生,这时, 综上:

模糊集合间的包含关系—包含度定理(续) 这种证明方法同样给出了优化子集B*的一个更重要的性质: 因为如果有一个失配关系,那么 , 所以 ,其余的 ,所以 故 。 B*是具有双重优化特性的点,它既是离A最近的B 的子集,也是离B最近的A的子集A*:

模糊集合间的包含关系—包含度定理(续) 包含度定理: 推导相对频率:

熵-包含度定理 包含度是模糊中最基本的有代表性的一个数值 熵-包含度定理: 证明: 将包含度定理中的A、B分别用 和 代替,并注意到交集 是并集 的子集,即可证得。

熵-包含度定理(续) 另外,利用下式也可得到该公式。 图示二维的熵-包含度定理。交集 是并集 的子集。可见长对角线的长度相等,所以并集 到交集 的模糊幂集所构成的超长方形的最优距离d*满足:

Thank You