定理15.8:对f(x)F[x],g(x)F[x], g(x)0,存在唯一的q(x),r(x)F[x], degr(x)<degg(x)或r(x)=0,使得: 当f(x)=g(x)q(x)+r(x)中的r(x)=0时, 称f(x)可被g(x)整除,记为g(x)|f(x),称g(x)为f(x)的一个因子,q(x)为商;r(x)0时,称q(x)为不完全商,而r(x)为余式。

Slides:



Advertisements
Similar presentations
简单迭代法的概念与结论 简单迭代法又称逐次迭代法,基本思想是构造不动点 方程,以求得近似根。即由方程 f(x)=0 变换为 x=  (x), 然后建立迭代格式, 返回下一页 则称迭代格式 收敛, 否则称为发散 上一页.
Advertisements

全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
1.3 二项式定理. [ 题后感悟 ] 方法二较为简单,在展开二项式之前根据二项 式的结构特征进行适当变形,可使展开多项式的过程简化.记 准、记熟二项式 (a + b) n 的展开式,是解答好与二项式定理有关 问题的前提,对较复杂的二项式,有时可先化简再展开,会更 简便.
专利技术交底书的撰写方法 ——公司知识产权讲座
复习: :对任意的x∈A,都有x∈B。 集合A与集合B间的关系 A(B) A B :存在x0∈A,但x0∈B。 A B A B.
3-7 二元高次方程组 用线性方程组的理论讨论二元高次方程组. 给出两个一元多项式有非常数公因式的条件。 引理:设
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
第三章 函数逼近 — 最佳平方逼近.
下周起,代数结构与数理逻辑课程上课教室改在2108教室
[S;*]是一个代数系统,*为定义在S上的二元运算,若满足:
近世代数(Abstract Algebra)
二、环同态 定义14.9:对于环[R;+,*]与环[R';+',*'],若存在映射:RR',使得对任r1,r2R有: (r1+r2)= (r1)+'(r2), (r1*r2)=(r1)*'(r2), 则称为R到R'的同态映射;当(R)=R'称两个环同态;当为一一对应时两个环同构;当R'R时称R到R'的同态为自同态,同构为自同构。
《高等数学》(理学) 常数项级数的概念 袁安锋
§1 线性空间的定义与性质 ★线性空间的定义 ★线性空间的性质 ★线性空间的子空间 线性空间是线性代数的高等部分,是代数学
四种命题 班级:C274 指导教师:钟志勤 任课教师:颜小娟.
§2 无穷积分的性质与收敛判别.
第一章 行列式 第五节 Cramer定理 设含有n 个未知量的n个方程构成的线性方程组为 (Ⅰ) 由未知数的系数组成的n阶行列式
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
2-7、函数的微分 教学要求 教学要点.
第二章 矩阵(matrix) 第8次课.
有限域.
计算机数学基础 主讲老师: 邓辉文.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
材料力学 第十二章 能量方法.
第一章 函数与极限.
因式定理.
§4 谓词演算的性质 谓词逻辑Pred(Y)。 是Y上的关于类型 {F,→,x|xX}的自由代数 赋值 形式证明
密码学中常用的数学知识 公钥密码体制的基本概念 RSA算法
实数与向量的积.
线性代数 第二章 矩阵 §1 矩阵的定义 定义:m×n个数排成的数表 3) 零矩阵: 4) n阶方阵:An=[aij]n×n
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
定理14.17:F[x]为域F上的多项式环, 商环F[x]/(p(x))是域, 当且仅当p(x)为F[x]上的不可约多项式。
Z3[x]/(x2+1) x2+1在Z3上不可约, Z3[x]/(x2+1)为域 Z3[x]/(x2+1) ={ax+b|a,bZ3}
复习.
第十章 双线性型 Bilinear Form 厦门大学数学科学学院 网址: gdjpkc.xmu.edu.cn
 多項式的除法 x3 + 2x2 – 5x + 6 = (x – 1)(x2 + 3x – 2) + 4 被除式 除式 商式 餘式
测验: 2.设是群G上的等价关系,并且对于G的任意三个元素a,x,x‘,若axax’则必有x x‘。证明:与G中单位元等价的元素全体构成G的一个子群。 H={x|xG,并且xe} 对任意的xH, xe, xee=xx-1 对任意的x,yH, xe, ye, eye, x-1xyx-1x.
推论14.2:f(x), (x-a)F[x],则f(x)被(x-a)除的余式为f(a)。
Zp上的n次不可约多项式f(x)的根域是什么? 定理:Zp上的n次不可约多项式f(x)的根域是GF(pn)=Zp()
定理21.9(可满足性定理)设A是P(Y)的协调子集,则存在P(Y)的解释域U和项解释,使得赋值函数v(A){1}。
第16讲 相似矩阵与方阵的对角化 主要内容: 1.相似矩阵 2. 方阵的对角化.
§8.3 不变因子 一、行列式因子 二、不变因子.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
由a生成的理想: 有单位元的交换环,(a)={a*r|rR} 无单位元的交换环,(a)={a*r+na|rR}
1.2 子集、补集、全集习题课.
1.设A和B是集合,证明:A=B当且仅当A∩B=A∪B
例:循环群的每个子群一定是循环群。 证明:设H是循环群G的子群,a是G的生成元。 1.aH
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
4) 若A可逆,则 也可逆, 证明: 所以.
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
函數與極限 函數 函數的圖形 函數的極限 連續函數 在無窮大處的極限 無窮極限 經濟學上的函數 商用微績分 Chapter 1 函數與極限.
2.2矩阵的代数运算.
上杭二中 曾庆华 上杭二中 曾庆华 上杭二中 曾庆华.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
A经有限次初等变换化为B,称A与B等价,记作A→B.
高中数学必修 平面向量的基本定理.
《离散结构》 二元运算性质的判断 西安工程大学计算机科学学院 王爱丽.
§2 方阵的特征值与特征向量.
6.2 线性变换的运算 授课题目:6.2 线性变换的运算 授课时数:2学时 教学目标:掌握线性变换的三种运算及
二、代数扩域 定义15.7:当域F的扩域K中每个元素都是F的代数元时,称K为F的代数扩域。当1,…, n为域F上的代数元时,记F(1,…, n)为包含F和1,…, n的最小代数扩域,当n=1时,又称它为F的单代数扩域。
§4 理想与商环 一、理想 定义14.13:[R;+,*]为环, 若I ,IR,关于+,*运算满足条件:
定义5 把矩阵 A 的行换成同序数的列得到的矩阵,
定理16.8:F()与F()是域F上的两个单代数扩域, 与在F上具有相同的极小多项式p(x)F[x],则:F()≌F()。
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
陪集 例:三次对称群S3={e,1, 2, 3, 4, 5}的所有非平凡子群是:
数学物理方法 傅立叶变换.
§4.5 最大公因式的矩阵求法( Ⅱ ).
第三章 线性方程组 §4 n维向量及其线性相关性(续7)
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
Presentation transcript:

定理15.8:对f(x)F[x],g(x)F[x], g(x)0,存在唯一的q(x),r(x)F[x], degr(x)<degg(x)或r(x)=0,使得: 当f(x)=g(x)q(x)+r(x)中的r(x)=0时, 称f(x)可被g(x)整除,记为g(x)|f(x),称g(x)为f(x)的一个因子,q(x)为商;r(x)0时,称q(x)为不完全商,而r(x)为余式。 推论15.2:f(x), (x-a)F[x],则f(x)被(x-a)除的余式为f(a)。

推论15.3:f(x)F[x],aF,(x-a)|f(x)当且仅当f(a)=0。 定义15.10:f(x),g(x),h(x)F[x],当h(x)|f(x) 且h(x)|g(x)时,称h(x)为f(x)和g(x)的公因子;若对任c(x)F[x],c(x)|f(x),且c(x)|g(x)时必有c(x)|h(x),则称h(x)为f(x)和g(x)的最大公因子,记为 h(x)=GCD(f(x),g(x)),简记为(f(x),g(x))。 例:在Z3[x]中,f(x)=2x4+1,g(x)=x5+2,求它们的最大公因子。

定理15.9:(1)GCD(f(x),g(x))可用类似于上述方法求得; (2)当h(x)=GCD(f(x),g(x))时,必存在s(x),t(x)F[x],使h(x)=s(x)f(x)+t(x)g(x) FF[x],F*=F-{0},任意aF*,存在逆元 对于F[x]中其他元素f(x),当degf(x)>0, 不存在g(x)F[x],使得f(x)g(x)=1. 这里1是域F的单位元. 对F[x]中有逆元的元素称为可逆元.

定义15.11:当aF[x],并存在a-1F[x],使aa-1 =1时,称a为F[x]中的可逆元,否则称为不可逆元。 F[x]中可逆元全体就是F*,F[x]-F*是其不可逆元全体组成的集合。

定义15.12:f(x)F[x],如果存在h(x),t(x),使得f(x)=h(x)t(x),当degh(x),degt(x)1时,称f(x)为F上的可约多项式; 当h(x)和t(x)中必有一个为零次多项式,设degh(x)=0,即h(x)F*为可逆元,称f(x)为不可约多项式,或说f(x)在域F上不可约。 对于实数域上多项式因式分解, 可约与不可约 x2-2x-3=(x-3)(x+1), x2-x-6=(x-3)(x+2) x2-2x-3和x2-x-6都是可约多项式,并且有公因子(x-3). x2+1在实数域上不可约.

例:对于Z3[x],f(x)=x5+2有因子x+2,它可分解为: f(x)=x5+2=(x+2)(x4+x3+x2+x+1) x4+x3+x2+x+1则是不可约多项式 注意这是在域Z3上的分解

定理15.10:F为域,f(x),g(x)F[x],则有f(x)|g(x),且g(x)|f(x),当且仅当f(x) =ag(x), aF*。这里f(x)、g(x)0。 f(x)1=f(x)q1(x)q2(x) 因F[x]关于多项式的乘法与加法构成整环, 满足消去律,即有1=q1(x)q2(x). q1(x)和q2(x)可逆. 若f(x)=ag(x)(aF*),则易得f(x)|g(x),g(x)|f(x)

因此由15.10得g1(x)=ag2(x),这里aF* (2)对f(x),g(x)的任意公因子d(x),设法证明d(x)|g2(x) 定义15.10:f(x),g(x),h(x)F[x],当h(x)|f(x) 且h(x)|g(x)时,称h(x)为f(x)和g(x)的公因子;若对任c(x)F[x],c(x)|f(x),且c(x)|g(x)时必有c(x)|h(x),则称h(x)为f(x)和g(x)的最大公因子,记为 h(x)=GCD(f(x),g(x)),简记为(f(x),g(x))。 定理15.11:在多项式环F[x]中,g1(x)= GCD(f(x),g(x)),则g2(x)=GCD(f(x),g(x)),当且仅当g1(x)=ag2(x),这里aF*。 证明:(1)根据最大公因子的定义,有 g1(x)|g2(x), g2(x)|g1(x) 因此由15.10得g1(x)=ag2(x),这里aF* (2)对f(x),g(x)的任意公因子d(x),设法证明d(x)|g2(x)

引理15.1:F[x]为域F上的多项式环,f(x),g(x), h(x)F[x], f(x)|g(x)h(x),并且GCD(f(x),g(x)) =aF*时,有f(x)|h(x)。 证明:利用最大公因子的性质定理15.9(2)得 存在s(x),t(x)F[x],使 a=s(x)f(x)+t(x)g(x) 即1=a-1s(x)f(x)+a-1t(x)g(x) 因此有h(x)=a-1s(x)f(x)h(x)+a-1t(x)g(x)h(x) 因为f(x)|g(x)h(x) 故f(x)|a-1t(x)g(x)h(x), 所以f(x)|a-1s(x)f(x)h(x)+a-1t(x)g(x)h(x) 即f(x)|h(x)

引理15.1:F[x]为域F上的多项式环,f(x),g(x), h(x) F[x], f(x)|g(x)h(x),并且GCD(f(x),g(x))=aF*时,有f(x)|h(x)。 引理15.2:多项式环F[x],p(x)F[x]为不可约多项式, f(x),g(x)F[x],若p(x)|f(x)g(x), 则p(x)|f(x)或p(x)|g(x) 分析:与引理15.1的区别是最大公因子不一定是F*中的元素.但多了个不可约的条件,可考虑以此为突破口. 证明:GCD(f(x),p(x))|p(x)(公因子) 因此有p(x)=h(x)GCD(f(x),p(x)) p(x)不可约,因此或者h(x)F*, 或者GCD(f(x),p(x))F*. 分情况讨论

定理15.12(唯一因式分解定理):多项式环F[x]中任一非零元素f(x)或为F中的元素或可分解为有限个不可约多项式之积。在下述意义下,分解是唯一的: 若f(x)=p1(x)…pn(x)=q1(x)…qm(x),则m=n, 并且在适当调整因子次序后qi(x)= aipi(x),aiF,i=1,…,n。 证明:(1)可分解性 对degf(x)作归纳证明. (2)唯一性 若f(x)=p1(x)…pn(x)= q1(x)…qm(x) 对n作归纳证明

§4 理想与商环 一、理想 定义15.13:[R;+,*]为环, 若I ,IR,关于+,*运算满足条件: (1)任a,bI,a-bI (2)任aI,rR,a*r,r*aI 称[I;+,*]为[R;+,*]的理想,当I{0},IR时是真理想,否则就是平凡理想。

例:[nZ;+,]是整数环[Z;+,]的理想。 例:[R;+,*]为单位元交换环,任取元素 aR,作R的子集:(a)={a*r|rR},则[(a);+,*]为[R;+,*]的理想。 若[R;+,*]是不含单位元的交换环,对任意aR,作子集(a)={a*r+na|rR,nZ},则[(a);+,*]为[R;+,*]的理想。 这样的理想(a)={a*r+na|rR,nZ}称为由元素a生成的主理想。

作业:P317 20,22,23,27,29