函 数 做 图 主讲人:汪凤贞.

Slides:



Advertisements
Similar presentations
简单迭代法的概念与结论 简单迭代法又称逐次迭代法,基本思想是构造不动点 方程,以求得近似根。即由方程 f(x)=0 变换为 x=  (x), 然后建立迭代格式, 返回下一页 则称迭代格式 收敛, 否则称为发散 上一页.
Advertisements

2.5 微分及其应用. 三、可微的条件 一、问题的提出 二、微分的定义 六、微分的形式不变性 四、微分的几何意义 五、微分的求法 八、小结 七、微分在近似计算中的应用.
夯实教师教育 办好非师范教育 ---- 以外语专业为例 河北师范大学 李正栓. 1. 坚定不移地实施教师教育 A. 关键词:师范院校 师范院校是以培育师资为目的的教育机构,多属于高等教育 层级。 含 “ 师范大学 ” 或 “ 师范学院 ” 。另外,由师专升为本科的院校 多数更名为 “XX 学院 ”
写作中的几点小技巧 金乡县羊山中学 张秀玲. 一、写外貌不用 “ 有 ” 作文如何来写外貌?同学们的作文里总会出现类 似这样的句子: “ XX 可漂亮了,她有一头卷卷的黄头 发,有一双乌黑的葡萄般的大眼睛,有高高的鼻子, 还有一张樱桃小嘴。 ” 如果试着去掉文中的 “ 有 ” ,把文字重新修改一遍,
十大写作技巧. 一、写外貌不用 “ 有 ” 作文如何写外貌?孩子的作文里总会看到类似这样的名 子: “XX 可漂亮了,她有一头卷卷的黄头发,有一双乌黑的 葡萄般的大眼睛,有一个高高的鼻子,还有一张樱桃小嘴。 ” 如果你试着让他们去掉文中的 “ 有 ” ,把文字重新串联一遍, 会发现作文顺了很多。 写上段文字的同学经蒋老师指导后修改如下:
招商谈判技巧 芝麻官营销. 技巧原则 孙子兵法云: “ 兵无常势,水无常形,能 因敌之变化而取胜者,谓之神。 ” “ 内功心法 ” 只有在真正实践中才能体会、 掌握。 谈判有没有具体的套路?有没有 “ 一招制 敌 ” 的擒拿手?
“ 十二五 ” 广东省科技计划项目 经费监管培训 广东省科技厅 一、专项经费管理法规 一、专项经费管理法规 二、经费监督检查 二、经费监督检查 三、项目预算调整管理 三、项目预算调整管理 四、课题经费预算执行管理 四、课题经费预算执行管理 五、项目(课题)财务验收 五、项目(课题)财务验收 2.
教育研究课题的实施 北京教育科学研究院 陶文中 第一节 如何制定课题研究计划 (开题论证报告) 一般结构(框架) 1 、课题名称 2 、研究目的和意义 3 、研究的基本内容 ( 1 )理论研究(细分为若干子项目) ( 2 )实践研究( 细分为若干子项目)
1 語音下單代表號 請輸入分公司代碼 2 位結束請按#字鍵 統一證券您好 ﹗ 請輸入分公司代碼結束請按#字鍵,如不知分公司代碼請按*號。 請輸入您的帳號後 7 位 結束請按#字鍵 請在聽到干擾音時輸入您的密碼結束請按#字鍵 主選單一覽表 委託下單請按 1 ; 取消下單請按 2 成交回報請按.
人權教育融入教學與 法治教育 彭巧綾 蔡永棠 閱讀理解 六頂思考帽 以概念圖整理閱讀理解 指導學生運用關鍵詞,繪製概 念圖,並分享修正。
义务教育课程标准实验教材 四年级下册 语文园地六 词语盘点 习作 口语交际 我的发现 日积月累 展示台.
被 江 泽 民 残 酷 迫 害 致 死 的 法 轮 功 学 员 李竟春,女,1954年3月16日出生,江西省九江市人。于2000年12月18日到北京证实大法,关押在北京市门头沟看守所遭受非人的迫害。在狱中李竟春绝食抗争被管教骗喝一瓶“可疑的豆浆”后一直咳嗽不断,发烧呕吐,吐出白色有强烈异味液体,于2000年1月4日死亡。
目录 如何职位分析调查表 职位分析的目的与意义 职位调查表内容与要点说明 职位分析注意事项 职位分析调查工作计划.
1 修辞手法 2 表现手法 3 表达方式 4 结构技巧 表达技巧.
个人简历 制作 天津民族中专 刘冬.
第八编 清代文学 清代文学绪论 第一章 清代诗词文 第二章 《长生殿》与《桃花扇》 第三章 《聊斋志异》 第四章 《儒林外史》
2015年衢州开化 事业单位备考讲座 浙江研究院 刘洁.
专利技术交底书的撰写方法 ——公司知识产权讲座
視力不良學(幼)童 篩檢與矯治常見問題 長庚醫院 兒童眼科 楊孟玲 醫師.
轻松应对百变题型——说明文阅读 五年级 语文 赵老师.
描写家乡的一处景物.
问卷调查法.
小一中文科 家長工作坊
第三章 企业主要经济业务核算 学习目的和要求:通过对工业企业的主要经济业务的了解,要求学生掌握、巩固帐户与借贷记帐法的相关知识及其运用,并进一步了解和熟悉会计核算方法。 本章重点与难点问题是:企业在各阶段的业务核算 内容提要:本章首先介绍企业在各不同阶段(企业创立阶段、企业供应阶段、企业生产阶段、企业销售阶段等)的业务内容;然后介绍了各阶段业务核算所需设置的帐户及其帐户的功能与结构;最后举例说明各阶段业务的核算。
校本培训 常州市新北区新桥实验小学 金文英 团体活动助人成长 校本培训 常州市新北区新桥实验小学 金文英
2014年造价员资格考试 建设工程造价管理基础知识 徐建元.
教師權益─ 退撫制度變革修法 吳忠泰 退撫制度變革修法電子檔可在全教總網站下載分享
【 准 备 上 课 啦 】 心 境 —— 快 乐 源 泉 学习 — 悦于心 聚于魂 化于行.
第七章 无形资产.
《幼儿园模拟教学》(第一章 第二章) 呼伦贝尔学院 教育科学学院 学前教育教研室.
广州事业单位面试专项练习 主讲:蔡厚佳 微博:腰果公考菜菜爱做梦 2016年04月29日-05月05日.
房地产开发项目经营情况 (X204-1表).
幼儿园现代管理的思考与实践.
童軍志工服務報告 陽光基金會 愛心捐活動 第2組 報告人:秦惠芬 製作人:江妮錡.
面试与面试技术.
函 文种常识 结构写法 注意事项 例文赏析与训练.
学习情境四 旅行社接待业务的管理 【学习目标】 了解旅行社接待业务的性质与特点; 熟悉旅行社门市接待业务与管理;
发生火灾怎么办 后窑镇中心小学 吴琼.
太阳能概述   太阳能是由太阳内部热核反应所释放出的光能、热能及辐射能量。它每年辐射到地球上的能量达1813亿吨标准煤,相当于全世界年需要能量总和的5000倍,是地球上最大的能源。 广东工业大学 材料能源学院.
强化。心系.
年金改革的是與非 吳忠泰.
勞保局人員.
走向对话的地理课堂教学 海盐高级中学 徐海群.
仿写训练 华罗庚实验学校西宁分校 钟卫平.
三、进项转出.
求职信.
102年度「農業旅遊特色商品發展暨行銷活動計畫」研提原則說明
四种命题 班级:C274 指导教师:钟志勤 任课教师:颜小娟.
十二章 罪数形态.
任务驱动:请阅读下文思考及完成以下任务 环节一、导入新课,激发兴趣
项目四 出入境计调操作流程.
名师垂教 阳痿1年余.
(和上个月比较,上个月用电量是单位“1”)
用百分数解决问题(二).
2005年度人事劳动教育统计 年报培训 水利部人才资源开发中心 二○○五年十二月.
第五章 定积分及其应用.
“点”击中考 -----破题方法 平昌中学 谢向前.
标点符号的作用 某人外出做生意,给父母写了这样一封信:“儿的生活好痛苦一点儿也没有粮食多病少挣了很多钱。”父母读了这封没有标点的信后,一个笑一个哭。请根据这两位父母的不同理解,加标点。 笑:儿的生活好痛苦一点儿也没有粮食多病少挣了很多钱 哭:儿的生活好痛苦一点儿也没有粮食多病少挣了很多钱.
檔案銷毀、移轉及移交.
第四章 存货 第一节 存货的确认与初始计量 一、概念与确认条件 (一)概念 P95 (二)种类 P95 原材料; 在产品; 自制半成品;
农村后1/5数学学困生的成因 及对策研究略谈 衢州市教育局教研室 裴云姣.
已知长方形的周长为72厘米,长比宽的2倍还少12厘米,求长方形的面积。
青春期孩子的相处之道.
企业所得税年度纳税申报表(2014版)讲解 ——税收优惠.
有趣的汉字.
摩擦力.
小太陽兒童人文藝術學院兒童畫展 地點:住院大樓9F、11F外走道( )
导数的应用 ——函数的单调性与极值.
團體衛生教育護理創意競賽 報告者:護理科 計畫主持人邱馨誼講師
東海大學教職員 退撫儲金增額提撥 說明.
Presentation transcript:

函 数 做 图 主讲人:汪凤贞

五、函数做图(描绘函数图象)  步骤 确定定义域。 确立是否具有奇偶性、周期性? 确定渐近线。 令f`(x)=0 ,解得全部稳定点。 求f``(x),令 f``(x)=0,求得全部解。 将以上求得的各点从小到大排列, 将 定义域分成若干个开区间,列表讨论 f`,f``在各个开区间的符号,确定单调区间与凹凸区间。确立极值点与拐点。

确定一些特殊点及计算一些必要点。 描点做图。 例19 描绘函数 的图象 解:1. 定义域:(-∞,+∞) 2. 是偶函数 3. 是水平渐近线 ( 即为斜率k=0的斜渐近线) 4. ∴令 ,得x=0是唯一稳定点 5.

令f``(x)=0,得2 所以x= 6.列表计算 x 0 f `(x) + - f``(x) f```(x) 拐点 极大值 f(x)=1

7.与y轴交点为(0,1)也是极大值点、也是最大值点。 稳定点: 必要点:  稳定点: 必要点: 8.描点作图,如图所示。 1 o -1

例20 描绘函数 y=xarcsinx的函数。 解:1.定义域为R,偶函数。渐进线:y= 2. f`(x)=arctanx+x/1+x*x。令f(x)=0,得x=0 3. 4.列表计算,极小点x=0,也是最小值点。   X (- ∞,0) 0 ( 0,+∞) f```(x) - 0 + f``(x) + + + f(x) 极小点f(0)=0

5. 与坐标轴交点(0,0)。先作渐进线y= 6.下面描点做图: 1 2 3 4 -2 -1 -3 -4 x o

例22 描绘函数 fx)= 的图象。 解:1 定义域:D={x|x R且x 1} 2 f(x)= 3           ∴ X=1是垂直渐近线 非奇非偶非周期

 无水平渐近线。 4.  令f`(x)=0,得x=2为稳定点。 5. 令 即

7.极小值f(2)=3。拐点(a,f(a))= f(0)=-1,f(-1)=3,f(-2)=9-2/3。 8.作点(0,-1)、 (-1,3)、   (-2,9-2/3)、 (2,3)、 (a,0)、 (3,5) 9.描点作图:

10.进一步分析:当 x 时, 11.图象无限趋近y= 当x<1时,2/(x-1)<0,曲线在抛物线的下方; X>1,2/(x-1)>0,曲线在抛物线的上方。