p53 通过直接抑制葡萄糖-6-磷酸脱氢酶活性调控细胞生物合成

Slides:



Advertisements
Similar presentations
期末考试作文讲解 % 的同学赞成住校 30% 的学生反对住校 1. 有利于培养我们良好的学 习和生活习惯; 1. 学生住校不利于了解外 界信息; 2 可与老师及同学充分交流有 利于共同进步。 2. 和家人交流少。 在寄宿制高中,大部分学生住校,但仍有一部分学生选 择走读。你校就就此开展了一次问卷调查,主题为.
Advertisements

應用聯合分析法探討婦女對子宮頸癌篩檢方案之偏 好 子宮頸癌是國人常見之婦女癌症,民國 95 年的發生率為台灣婦女癌症之第二 位,死亡率為第六位。許多研究證實子宮頸癌篩檢為預防子宮頸癌最有效之 方法,我國婦女的子宮頸癌篩檢率低是導致子宮頸癌發生率及死亡率偏高的 重要原因,顯示如何提升篩檢率為一重要議題。因此本研究擬瞭解婦女受檢.
Disorders associated with G protein- coupled receptors -Kaposi’s sarcoma ( 卡波济肉瘤 ) 谢喜秀
人类疾病与健康 之基因治疗 主讲人:吴润琦. 疾病的定义 “ 疾病 ” 最常应用的定义是 “ 对人体正常形态与功能的偏离 ” , 一般可分为普通疾病和遗传病。 生物技术与人类.
THE HUMEN PERSPECTIVE Disorders Associated with G protein-Coupled Receptors.
基質金屬蛋白 ?-2,-9, 及其組織抑制劑 -1,-2 基因多形性與泌尿道上皮癌之 相關研究 泌尿道上皮癌中以膀胱癌為最常見的癌症,膀胱癌的研究顯示,基質金屬蛋白酶( matrix melloproteinase, MMPs )家 族與腫瘤細胞的增生、血管生成及進展有密切的相關,其中又以 MMP-2.
血管增生意指從已存在的微血管中長出新的血管,生理方面如胚胎發育、個體的成長、傷口癒合、女性的月經週期。 病理方面如腫瘤生成、風濕性關節炎、糖尿病造成的視網膜病變都與血管增生有關。行政院衛生署針對台灣地區國 人死亡原因的統計資料顯示,前五名分別是惡性腫瘤、腦血管疾病、心臟疾病、事故傷害、糖尿病。肺癌、肝癌、
第四届口腔颌面头颈肿瘤基础研究及干细胞学术会议
Ch7 人口成長與一胎化家庭 國經所 袁國軒 潘鵬升.
Department of pharmacology
复习 病毒的出没具有复杂性.
刘立明 江南大学生物工程学院环境生物技术室
慢性鼻竇炎病人趨化激素RANTES, Eotaxin與疾病嚴重度的相關性
Inactivation of EWS reduces PGC-1α protein stability and mitochondrial homeostasis Proc Natl Acad Sci U S A May 12;112(19): 报告人:王旭丹.
什么是艾滋病? 艾滋病(AIDS)是一种病死率极高的严重传染病—世纪温疫和超级癌症,目前还没有治愈的药物和方法,也没有疫苗预防。
牙齒共振頻率之臨床探討 論 文 摘 要 論文名稱:牙齒共振頻率之臨床探討 私立台北醫學院口腔復健醫學研究所 研究生姓名:王茂生 畢業時間:八十八學年度第二學期 指導教授:李勝揚 博士 林哲堂 博士 在口腔醫學的臨床診斷上,到目前為止仍缺乏有效的設備或方法可以評估或檢測牙周之邊界狀態。臨床上有關牙周病的檢查及其病變之診斷工具,
壯筋續骨湯對骨細胞活性之影響 壯筋續骨湯為一種常用於促進骨折癒合之中藥複方,當中包括17種中藥材。根據傳統之中醫理論,這些組成物具有補腎強精、促進血液循環、幫助胃腸道吸收等功能。而在本實驗中擬藉由骨細胞培養之模式,探討此一複方對骨形成作用和骨吸收作用之影響,並以各種生化分析之方法來印證其作用機制。 中藥複方經水煮萃取,將之濃縮乾燥,針對此一初萃產物進行各項活性分析。並進一步以乙酸乙酯.
醫院自製天然養生灌食配方的營養成份探討 管灌飲食是醫院及長期照護體系中常見的一種飲食方式,自從1970年以來,商業配方因方便使用及人力節省已然成為主流,但其雖可提供符合基本營養素建議量,但卻由於不含天然食材,因而未能涵蓋近年來被一一發現存在植物界,對人體健康極為重要的化合物,簡稱植化素(phytochemicals)。臺北市立聯合醫院營養部,於2005年起陸續推出以營養豐富且多樣化之天然食材為主的自製天然養生灌食配方(養生配方)及蔬果精力湯,供應予住院及護理之家個案使用。為暸解配方在經過烹調、攪打、過濾等
乳腺中心实验室 2012级硕士 李满秀.
生物電化學短講 生物體能量 呼吸作用 生物電子傳遞系 糖與醣 葡萄糖 糖解作用 檸檬酸循環(TCA cycle) 電子傳遞鏈 傳導概論
武汉职业技术学院 微生物技术应用 背景知识四:微生物生长测定技术.
朱戈靖 醫師 門諾醫院 醫教部主任 門諾醫院 心臟科主任 心臟專科醫師指導醫師 專科護理師指導醫師 ACLS 指導醫師
CET-4 阅读理解.
生物治疗国家重点实验室 生物治疗协同创新中心 电话:
B型肝炎帶原之肝細胞癌患者接受肝動脈栓塞治療後血液中DNA之定量分析
水飛薊 (Silymarin)對高血糖症之影響
不同榖類為糖類來源對糖尿病老鼠體內氧化壓力、蛋白質糖化及脂質代謝的影響
多菌株乳酸菌組合在飼料添加物及保健食品之應用-
第五章 糖代谢 Metabolism of Glucose
分析抗焦慮劑/安眠劑之使用的影響因子在重度憂鬱症及廣泛性焦慮症病人和一般大眾的處方形態
嗜中性彈性蛋白酶藉由誘發NF-κB抑制因子降低人類呼吸道平滑肌細胞介白素8的合成
上皮生長因子接受器-1, -2基因多形性與泌尿道上皮癌之相關研究
科研领军人物——施一公.
缺 氧 (hypoxia).
微生物燃料电池 王金玉
酵母双杂交系统 Yeast Two-hybrid System(interaction trap)
HBsAg阳性肝细胞的膜表面HBsAg抗原的检测
题目 第一作者1,2,第二作者1,3, 及第三作者等 1,4* 1,大学,部门,城市
What water is more suitable for nurturing the goldfish
實驗動物技術應用(一) 基因改造-技術原理
Chiu JH1, Hsu CY2, Tsai YF1, Liu CY3, Huang TT3, Tseng LM1, Shyr YM1
生化Ch21 partIII 重點整理 生科2A 0993B013許嘉珊 0993B035張以潔.
細菌的代謝 metabolism Usually, bacteria produce extracellular enzymes to degrade (or digest) surrounding nutrient molecules into small molecules for importing.
流式細胞分析儀技術 分細所 張新侯 Flow cytometer analysis
Amazing Gingers 神奇的生薑 Ginger contains anti viral, anti toxic, and anti fungal properties, and is used for the prevention of and treatment against the.
多元新配方— 添加日本專利原料褐藻醣膠Fucoidan
细菌双组分调节系统 Two-Component Regulatory System
中華民國醫事放射學會(題目:標楷體,72號字,粗體)
Major Metabolic Pathway Glycolysis Mitochondria
生物芯片技术 刘超 李世燕 谢宏林
第 八 章 核 苷 酸 代 谢 Metabolism of Nucleotides.
Amazing Gingers 神奇的生薑 Ginger contains anti viral, anti toxic, and anti fungal properties, and is used for the prevention of and treatment against the.
辐射带 1958年:探险者一号、探险者三号和苏联的卫星三号等科学卫星被发射后科学家出乎意料地发现了地球周围强烈的、被地磁场束缚的范艾伦辐射带(内辐射带)。 这个辐射带由能量在10至100MeV的质子组成,这些质子是由于宇宙线与地球大气上层撞击导致的中子衰变产生的,其中心在赤道离地球中心约1.5地球半径。
EGF与细胞信号传导 Signal Transduction
Prognostic value of snoRNA U50A and its regulatory function in breast cancer Yao-Lung Kuo1, Jie-Ning Li2,3, Yi-Ting Chen2,4, Ming-Yang Wang5, Pai-Sheng.
Amazing Gingers 神奇的生薑 Ginger contains anti viral, anti toxic, and anti fungal properties, and is used for the prevention of and treatment against the.
Amazing Gingers 神奇的生薑 Ginger contains anti viral, anti toxic, and anti fungal properties, and is used for the prevention of and treatment against the.
交流阻抗的量測與分析 交流阻抗 (AC Impedance) 電阻的阻抗 Z=R 電容的阻抗 電感的阻抗 Z〞 ω變大 R Z′
突發神經性耳聾病患 周邊血液白血球之 日夜節律基因表現變化
CHAPTER 6 Ribosome and Ribozyme.
生化報告 13組 0993B004 朱珮萱 0993B017 曾馨卉.
高考应试作文写作训练 5. 正反观点对比.
生化Ch21 partIII 重點整理 生科2A 0993B013許嘉珊 0993B035張以潔.
Amazing Gingers 神奇的生薑 Ginger contains anti viral, anti toxic, and anti fungal properties, and is used for the prevention of and treatment against the.
Chapter review part 2 第14組 吳雅蘭 鄞偈芸.
名词从句(2).
「生醫領域的職涯規劃」- Anthraquinones being Trichoderma biocontrol molecules
动词不定式(6).
Amazing Gingers 神奇的生薑 Ginger contains anti viral, anti toxic, and anti fungal properties, and is used for the prevention of and treatment against the.
DNA RNA Protein Central Dogma 複 製 轉 錄 逆轉錄 轉 譯 Replication Reverse
Presentation transcript:

p53 通过直接抑制葡萄糖-6-磷酸脱氢酶活性调控细胞生物合成 p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase p53 通过直接抑制葡萄糖-6-磷酸脱氢酶活性调控细胞生物合成 梁俊平 河南师范大学水产学院 水产动物营养与饲料研究室

IF 19.679

Abstract Cancer cells consume large quantities of glucose and primarily use glycolysis for ATP production, even in the presence of adequate oxygen. This metabolic signature (aerobic glycolysis or the Warburg effect) enables cancer cells to direct glucose to biosynthesis, supporting their rapid growth and proliferation. 癌细胞生长需要消耗大量葡萄糖,主要是通过糖酵解产生ATP,但这种糖酵解 甚至在氧充足条件下依然很活跃。有氧酵解或瓦博格效应的这种代谢特征促进 了癌细胞直接将葡萄糖进行生物合成,维持癌细胞快速、无限增殖。

“瓦博格效应”疑问——“为什么肿瘤细胞大量消耗葡 萄糖却不能高效产能?” 糖代谢有2种途径:线粒体氧化磷酸化和糖酵解。正常哺乳动物细胞在有氧条 件下,糖酵解被抑制。然而,1920年,德国生化学家Warburg发现:肝癌细胞 的糖酵解活性较正常肝细胞活跃。提出:在氧气充足下,恶性肿瘤细胞糖酵解 同样活跃,这种有氧糖酵解的代谢特征称为瓦博格效应,表现为葡萄糖摄取率 高,糖酵解活跃,代谢产物乳酸含量高。 “瓦博格效应”疑问——“为什么肿瘤细胞大量消耗葡 萄糖却不能高效产能?”

However, both causes of the Warburg effect and its connection to biosynthesis are not well understood. Here we show that the tumour suppressor p53, the most frequently mutated gene in human tumours, inhibits the pentose phosphate pathway (PPP). 然而,瓦博格效应产生的原因以及它与癌细胞生物合成的关系,还不是十分清 楚。在本文中,介绍了一种抑癌基因p53(在肿瘤细胞中发生变异频率较高的 基因),p53可抑制戊糖磷酸途径( pentose phosphate pathway ,PPP)。

Through the PPP, p53 suppresses glucose consumption, NADPH production and biosynthesis. The p53 protein binds to glucose-6-phosphate dehydrogenase (G6PD), the first and rate-limiting enzyme of the PPP, and prevents the formation of the active dimer. 通过PPP,p53可抑制葡萄糖消耗、NADPH产生 及生物合成。p53可以与戊糖磷酸途径上的第一 步反应的关键酶葡萄糖-6-磷酸脱氢酶(G6PD) 相结合,并抑制其活性(活性二聚体形成)。

Tumour-associated p53 mutants lack the G6PD-inhibitory activity Tumour-associated p53 mutants lack the G6PD-inhibitory activity. Therefore, enhanced PPP glucose flux due to p53 inactivation may increase glucose consumption and direct glucose towards biosynthesis in tumour cells. 在肿瘤细胞内,由于p53发生突变,无法抑制G6PD活性,因此,由于被p53抑 制的磷酸戊糖途径被激活,大量葡萄糖被消耗,而进行生物合成。

引言 The tumour suppressor p53 invokes anti-proliferative processes, of which the best understood include cell cycle arrest, DNA repair and apoptosis. 抑癌基因p53主要抑制癌细胞增殖过程,包括细胞周期停滞、DNA修复以及细 胞凋亡等已研究比较清楚。

p53可使周期蛋白cyclinB启动子区关闭而下调 cyclinB的转录水平。如在卵巢癌细胞中,球毛壳 甲素K在p53介导作用下,发生细胞G2期阻滞(Li et al., 2015)。 DNA损伤若被修复,细胞周期恢复正常;如果 损伤严重,DNA无法被修复,细胞则经历凋亡。 细胞凋亡的起始阶段的特征是Caspase被激活, 主要有:p53介导的线粒体凋亡通路,死亡受体 凋亡通路。

Recent studies indicated that p53 also has a role in modulating metabolism including glycolysis and oxidative phosphorylation. 近年来研究表明,p53在调节代谢方面有重要作用,包括葡萄糖酵解和氧化磷 酸化。 However, the role of p53 in regulating biosynthesis is less well understood. 但是,关于p53在生物合成中的调节功能研究甚少。

The PPP is important for both glucose catabolism and biosynthesis The PPP is important for both glucose catabolism and biosynthesis. In an oxidative phase, the PPP generates NADPH (nicotinamide adenine dinucleotide phosphate, reduced), the principal intracellular reductant required for reductive biosynthesis such as the synthesis of lipid, and ribose 5-phosphate, an essential precursor for biosynthesis of nucleotides. This is followed by a non-oxidative interconversion of ribose 5-phosphate to the intermediates in the glycolytic pathways. Despite the vital role of the PPP in biosynthesis and its close link to glycolysis, the regulation of the PPP in tumour cells remains unclear.

To investigate whether p53 modulates the PPP, we compared the oxidative PPP flux in isogenic p53+/+ and p53-/- human colon cancer HCT116 cells. Cells were cultured in medium containing [2-13C]glucose, and the glucose metabolites were measured by nuclear magnetic resonance (NMR) spectroscopy.

结果与分析 p53 deficiency correlates with increases in PPP flux, glucose consumption and lactate production colon cancer HCT116 cells colon cancer HCT116 cells mouse embryonic fibroblast (EMF) cells These results indicate that p53 deficiency increases glucose consumption mainly through an enhanced PPP flux.

p53 deficiency correlates with increases in PPP flux, glucose consumption and lactate production Inhibition of G6PD in these cells increased, rather than decreased, lactate production, regardless of p53 status.

p53 regulates NADPH levels The PPP plays a significant role in the production of cellular NADPH. The lack of p53 led to a strong increase in the NADPH level in HCT116 cells. Similarly, knocking down p53 in U2OS cells with small hairpin RNA (shRNA) strongly increased NADPH levels. Figure 2 p53 regulates NADPH levels

p53 regulates NADPH levels Treatment with G6PD siRNA minimized the difference in NADPH levels between p53-proficient and -deficient cells. The tissues from p53-/- mice-including heart, liver, kidney and lung-exhibited substantially elevated NADPH levels, compared with those in the corresponding tissues from p53+/+ mice. The exception was found in the spleen.

In the spleen, the activity of G6PD was very low (Fig In the spleen, the activity of G6PD was very low (Fig. 2g), and the PPP might not contribute substantially to the overall NADPH production. In contrast to p53 downregulation, overexpression of p53 led to a strong decrease in NADPH levels (Supplementary Fig. S1b).

NADPH is required for the biosynthesis of lipid The p53 -/- MEF cells showed enhanced lipid levels, compared with p53+/+ MEF cells, as evaluated by Oil Red O staining. The lack of p53 also resulted in higher levels of lipid in HCT116 cells. The difference in lipid accumulation between p53+/+ and p53 -/- cells diminished on treatment with G6PD siRNA or DHEA.

We also evaluated the effect of p53 on the formation of fat droplets in the liver. The liver of p53-/- mice had a larger number of bigger fat droplets, compared with the liver of p53+/+ mice. Histological sections of liver tissue from p53 -/- and p53+/+ mice were stained with haematoxylin and eosin. Arrows indicate fat droplets.

Together, these results indicate that p53 inhibits NADPH production and lipid accumulation by lowering the glucose flux through the PPP.

To investigate the mechanism by which p53 regulates the PPP, we assayed the activity of G6PD, a key regulatory point of the PPP.

The lack of p53 correlated with a strong elevation in G6PD activity in both MEF and HCT116 cells. Similarly, when p53 was knocked down in U2OS cells with shRNA, G6PD activity nearly doubled. MEF cells HCT116 cells MEF cells U2OS cells

These results show that p53 suppresses G6PD activity. The lack of p53 was associated with highly elevated G6PD activity. Conversely, overexpression of wild-type p53 in the p53-deficient cell lines (H1299 and p53-/- Mdm -/- MEF) caused a noticeable decrease in G6PD activity. H1299 These results show that p53 suppresses G6PD activity.

In each of the cell lines and tissues that were examined, the levels of the G6PD protein remained unchanged when p53 was downregulated or overexpressed. Moreover, p53 did not change the level of G6PD transcript.

To rule out the involvement of other p53 target genes in the inhibition of G6PD, we used an inhibitor of p53 transcriptional activity, pifithrin-α(PFTα).

PFTα impeded p53-induced expression of p21, but did not restore p53-inhibited G6PD activity. Treatment of p53+/+ HCT116 cells with cycloheximide alone resulted in a lower level of p53, which was accompanied by a higher activity of G6PD. Simultaneous treatment with cycloheximide and doxorubicin led to a stabilization of p53 above the basal level in unstressed cells, and a concurrent drop of G6PD activity below its basal level. As controls, none of these treatments altered G6PD activity in p53-/- HCT116 cells.

In addition, the p53 mutant V122A, which has a transactivation activity comparable to or even higher than wild-type p53 dependent on the target gene (Inga et al., 2001), failed to inhibit G6PD. (Inga et al., 2001)

Moreover, we treated cells with the nuclear export inhibitor leptomycin B to prevent cytoplasmic accumulation of p53. Leptomycin B reversed p53-mediated inhibition of G6PD.

Together, these results show that inhibition of G6PD by p53 is independent of transcription or translation and is a cytoplasmic, not nuclear, function of p53.

We next investigated whether p53 interacts with G6PD.

Flag-tagged p53 specifically associated with enhanced green fluorescent protein (eGFP) G6PD in vivo. Similarly, endogenous p53 interacted with endogenous G6PD. This interaction was enhanced when cells were treated with the proteasome inhibitor MG132 doxorubicin, both of which stabilized p53.

G6PD is a cytoplasmic protein, whereas p53 is present in both the cytoplasm and the nucleus, and consistently, the p53 - G6PD interaction occurred in the cytoplasm.

谢 谢 聆 听